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3., Theorem 3. The following conditions on a space X are equi-

valent: .

(2a) Some Cech complete subspace of Xx = injectively
projects onto X.

Ezb) If X is a subspace of Z then X e ,(Borel(Z)).

2¢) X is obtained by the disjoint Su-lﬁ operation from
locelly compact subseis in some Z>oX, N

(2d) There exists a complete sequence {U {’m’ls e % lnewt

of covers such that each Tl is an open cover of N, = U M,
M, = U{M_|1 € @} for each s, and if 6 € =, M, € Mg, then

N{N{Miigéniine m}eﬂﬂsmtne w3.

A mpace saiisfying the equjvalent condition in Theorem 3
will be called Cech~Luzin., Any Cech-Luzin space X is absolutely
bi-Suslin (Borel), and I do not know whether or not the converse
holds.

The basic stability results follow easily from (ia) and the
fact that any countable (% 0) power of = is homeomorphic to = .

References: [Frel D.H, Fremlin: éeoh—analytic spaces.Unpublished.
[P Z, Prolik: A survey of meparable descriptive

theor¥ of sets and spaoces. Czech., Math, J. 20
(95)( 370). 406-467.,
{Z} s.Jdu. Zolkov: O Radonovych prostranstvach, Dokl,

Akad. Neuk SSSR, 262(1982), T87-790.

DISTINGUISHED SUBCLASSES OF SECH-ANALYTIC SPACES

g%egékéalﬁ (Z1tné 25,11567, Praha 1, Geskoslovenako), oblatum

This is a free continuation of [!3]. Recall that if F 1is
a set of families of subsets of X then'a family -{'Xat aeAt in X

is celled § & -decomposable 1f there exist families {X_ lac i}
in ¥ , ne w , such that X, =U{X,_ Inc w} for each a So it

i8 clear what is meant by discretely € -decomposable, We shall
call a family {xak in a topological space uniformly discrete if

it is discrete in the finest uniformity inducing the topology.
A family {X % is called imolated if it is discrete in (W] X5

Following [!—H1] , 12 % 1is an infinite cardinal then & spa-

oe X is called % -analytic (or topologically ot -analytic, abb,
T 2 -analytic) if there exists an usco-compact correspondence
from the metric space 2% onto X such that the image of each
discrete family (equivalently, discretely decomposable family)
is uniformly discretely (or disoretely, resp.) ¢ -decomposable.
If the values are disjoint, then the space is called »¢-Luzin
(or topologically 2¢ -Luzin, resp.), and if the values are sing-
letons or empty then we speek about point-st-analytic ete. spe-
ces, Analytic means o¢c~-analytic for some s¢ , and similarly Lu-
zin etc. The theory of amalytic and Luzin spaces was developed
in [P-H, 2 3.1. A discussion of topologically analytic spaces ap-

peared in (B-J-R).
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Theory of analytic spaces has two important advantages in
eomparison with that of topological analytic spaces:

a) there is a nice description of analytic spaces as Su-
slin (closed) subsets of products Kx M with K compact and M ocom~
plete metric.

(b) Using the z:prmluct X x = taken in uniform spaces then
the projeotion X x —> X preserves uniformly discretely & -de-
composgable families,

Lemma 1, If Y is & separable metiric space then for emy X the pro-
JectIon along Y preserves isolatedly & -decomposable families.

Lemma 1 is the main point for introducing weakly topologi-
cally analytic (abb. WP analytic) spaces as imeges of complete
metric spaces under useco-compact correspondences preserving iso-
latedly & -decomposeble families. Indeed we have the following
characterization.

Theorem 1. Each of the following oonditions is necessary and suf-
clent for X to be WT analyjioc:

(3a) Some paracompact Cech complete subspace of X > = pro-
Jeots onto X.

(3d) There exists a complete sequence of & -isolated covers.

0f course, analytic or T analytic spaces are characterized
by existence of a complete sequence of & -uniformly discrete ox
6 -discrete covers, resp.

Theorem 2. Each of the following oconditions is necessary and suf-
ficTent for X to be WT point-analytio:

. §4a) Some completely metrizable subspace of X x =i projects
onto .

(44) There exists a complete sequence of & -isolated covers
with clusters of Cauchy filters being singletons.

(4e) X is éech-analytic and there exists a 6 -isolated net-
work for X,

Using the main result of [F-H1] , we obtain

Theorem 2‘. In a WT point-analytic space X each point-finite com-
pletely o (Borel(X))-additive family is isolatedly 6 -decompos-
able. In WT analytic spaces X the result is true for Suslin
(closed(X)) sets.

For the first separation principle the following kind of sets
works, Por each X let Isol Bo(X) be the smallest collection which
contains open and closed sets of X, and which is closed under
formation of countable intersections and 6 -isolated unions.

There are many reasons for trying_to understand whether or
not the classes of all WT analytic or Gech analytic spaces are
preserved by perfect maps. All I w is:

Theorem 4. The perfect image of a Cech analytic space is analytic
metrizable,

The proof depends on Lemma 2 from [F.].

Note that analytic spaces are paraoo&pact, T analytic spaces
are subparacompact, and WT analytic spaces are & -isolatedly re-
finable (also called weakly © -refinable spaces).
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