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A_CLOSED SEPARABLE SUBSPACE_NOT BEING A RETRACT OF ﬁN

Petr Simon (Mathemstical Institute of Charles University, Soko-
lovekd 83, 18600 Praha, Czechoslovakia), oblatum 17.4. 1984.

D, Maharam [M] proved that the following are equivalent:

(a) For each ideal I = G’(P) if there is a one-to-one ho-
momorphism from P(IN)/I to P(N 5, then there is a 1lifting
from P(N)/I to R(N), too;

(b) eve non-volid closed separable subapace of {3N is a
retract of 3 ’
and has raised the question, whether (a) or (b) is a true state-
ment, .

The answer to the Maharam s problem is in negative. We can
prove the two theorems below.
Theorem 1, There exists & subspece X ¢ 3N - N satisfying the
following:

(1) X = U X, where |X,| =1 and for each n € @ , the

set X is countable discretes
(2) for each n<m<w , X €X =~ X33
(3) for each n< @ and for each x€X , X is a ¢ - (K
point in X g = Xpq4
(4) suppose {U :k e wis P(N) to be a fanily of sets
such that for some n <  , UpnX, 1s finite and for each 1 <
o

(]
<k <@, U0fnX, +1 S Y. Then there is a family {V 1o & ¢3¢

& ®(N) such that for each L€ &, !Z‘?_I "ka Ul’: and for each
k < and for each finite set o, <olq< esecaly< ¢,5%V£‘15¢£}. LA

—_ (5) for each mapping f: N —>X there is a get T N and
an integer ny < < such that T* A X+¢ and for each n > n,,
an\f[ﬂ?] "‘%.,.1 =@
Theorem 2. If a subspace X < (3N satisfies (1) - (5) from The-
orem 1, then X is not & retract of AN.

1t should be noted that the first example of a closed se-
parable subspace of AN which is not a retract of (3N was gi-
ven by M. Talagrand under CH in [T] and the seocond one by A.
Szymanski under MA in [S],

References: [M] D. Maharam; Pinitely additive measures on the
ﬁtggorg, Sankhya, Ser. A, Vol. 38(1976),

- 364 -



[8] A. Szymanski: Some applications of tinmy mse-
quences, to appear, .

[*] M. Talagrand: Hon existence de relevement
pour certaines mesures finiement additives
2; thmoté- de AN , Math, Ann, 256(1981),

SHORT BRANCHES IN RUDIN-FROLIK ORDER

Eve Butkovilovd (M SAV, Jesennd 5, 04154 Kodice,leskoslovenske),
oblatum 27.4. 1984,

Rudin-Frolik order of types of ultrafilters in (3! has the
following propertiies: £
(21 (1) each type of ultrafilters has at most 2 Y predecessors,
2 L3

! (2) the cardinality of each btranch is at least 2 °.
Thus, Rudin-groh’.k order the cardinality of branches ocan be
only 2 ° or (27 °)*, It wae shown in [1] that there exists a
chain order - igomorphic to (25°)*. Hence, the existence of a

branch of cardinality (2 °)* is proved.

The following result solves the problem of the existemce of
a branch having smaller cardinality,

Theorem. In Rudin-Prolik order there exists an unbounded chain
order-isomorphic to Dqe

By the properties _&1) and (2) the branch containing this
chain has cardinality 2 °,
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BESULTS ON_DISJOINT COVERING SYSIEMS ON IHE RING OF INTEGERS

Ivan Korec, Department of Algebra, Faculty of Mathematics and
Physics of Comenius University, 84215 Bratislava, Czechoslovakia
oblatum 12.4. 1984.

A syszem of congruence classes
(1) &,(mod n,), ay(mod ny), «ev, & (mod n))

will be called a disjoint covering system (DCS) if for every
integer x there is exactly one i € {1, 2, ..., ki such that
x = ay(mod ny). The integers nj, ny, ..., o, will be called

moduli of (1) and their least common multiple will be called the
common modulus of (1).

If kx> 1 then no two moduli of (1) are relatively prime.
This condition can be expressed in the form

k k
(2) i/-\1 :j/-\ ®(ny, nJ)
where ¥ (x, y) is the formula

FzJudv (z ¥ 1 Azeu = x AZev = )
Consider more generally the formulae of the form
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