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ANNOUNCEMENTS OF NEW RESULTS

SPECIAL GROWTH
Helena Zlonickd (Charles University, Sokolovskd 83, 18600
Prague, Csechoslovekia), oblatum 2.5. 1984.

Let us denote by ©® the metriec on R-+1 defined for any
X = (XypeeepXyq)e ¥ = (Fg0000s¥gyq) € Ry by the formula

@) = (Uxgyy = Taa) + 512y - 71D12,

Por any qZ O we shall define set functions M% ana X9 ag
follows. If A is a Borel set in R-” then

s maa) = ué-_,'b? A{x e R.ﬂ\dint,, (x,h) & 6t )/ e ™21
00 o0
e 3(L) = :I:% inf {z§1 (ditlsb Si)qll C¢94 8 &
& (Vi =1,2,... ;diam, S; &)}
where A denotes the Lebesgue measure in R, .. Por metric o

with respect to the heat equation compare [31.
Theorem 13 Let G be an open set in R, and F be a relative-

1y closed set in G, Let Of q<m and suppose £ isg a locally in-
tegrable function in G satisfying

£(x) = o(aist, (x,?)" %) (resp. £(x) = O0ldist (x,7)"9))
as u-tp(x.r) —> 0, looally in G. If £ satisfies nin the sense
of distributions) the heat equation (3/d Xy, -; 5, 38%/0x2)t =

=0onG\PF and M™YK)< + 0 (resp. M™I(K) = 0) for any
compact set Kc P then f satisfies the same equation on G.
Theorem 2: Let K be a compact set in R, and let O< qém.

Suppose ¥ ™9 15 not &-finite on K (resp. ¥ ™ 4(K)> 0). Then
I:;ro exists a locally integrable function f on R, , satisfy-

2(x) = o(aiste(x,K)™Y) (resp. £(x) = F(disty(x,K)™Y)
as diatp(x,x) — 0, such that f is & solution of the heat equ-
ation on R“,\x but not on K _, 4. Such & function f can be

found as a heat potential of some non-negative Radon measure
supported by K.

The proofs of both Theorem 1 and Theorem 2 are included
in my thesis submitted to the Faculty of Mathematics and FPhy-
sics of the Charles University in April 1984, Por Theorem 1
compare the Bochner s removable singularity theorem as formu-
lated ip [2]. Note that our Theorem 1 is not implied by the
Bochner s theorem., For Theorem 2 compare an analogous result
of Hamann in [1]) dealing with elliptic equations.
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A_CLOSED SEPARABLE SUBSPACE_NOT BEING A RETRACT OF ﬁN

Petr Simon (Mathemstical Institute of Charles University, Soko-
lovekd 83, 18600 Praha, Czechoslovakia), oblatum 17.4. 1984.

D, Maharam [M] proved that the following are equivalent:

(a) For each ideal I = G’(P) if there is a one-to-one ho-
momorphism from P(IN)/I to P(N 5, then there is a 1lifting
from P(N)/I to R(N), too;

(b) eve non-volid closed separable subapace of {3N is a
retract of 3 ’
and has raised the question, whether (a) or (b) is a true state-
ment, .

The answer to the Maharam s problem is in negative. We can
prove the two theorems below.
Theorem 1, There exists & subspece X ¢ 3N - N satisfying the
following: U

(1) X = U X, where |X;| =1 and for each n € @ , the

set X is countable discretes
(2) for each n<m<w , X €X =~ X33
(3) for each n< @ and for each x€X , X is a ¢ - (K
point in X g = Xpq4
(4) suppose {U :k e wis P(N) to be a fanily of sets
such that for some n <  , UpnX, 1s finite and for each 1 <
o

(]
<k <@, U0fnX, +1 S Y. Then there is a family {V 1o & ¢3¢

& ®(N) such that for each L€ &, !Z‘?_I "ka Ul’: and for each
k < and for each finite set o, <olq< esecaly< ¢,5%V£‘15¢£}. LA

—_ (5) for each mapping f: N —>X there is a get T N and
an integer ny < < such that T* A X+¢ and for each n > n,,
an\f[ﬂ?] "‘%.,.1 =@
Theorem 2. If a subspace X < (3N satisfies (1) - (5) from The-
orem 1, then X is not & retract of AN.

1t should be noted that the first example of a closed se-
parable subspace of AN which is not a retract of (3N was gi-
ven by M. Talagrand under CH in [T] and the seocond one by A.
Szymanski under MA in [S],

References: [M] D. Maharam; Pinitely additive measures on the
ﬁtggorg, Sankhya, Ser. A, Vol. 38(1976),

- 364 -



		webmaster@dml.cz
	2012-04-28T10:16:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




