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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,2 (1984)

ON THE RADIUS OF A SET IN A HILBERT SPACE
Josef DANES

ARgtragt: 4An infimite dimemsiemal Hilbert space extemsiea
of Jumg theerem and its application to measures of nencempact-
ness axe given.

Koy werds: redius of a set, messure of nemcempastaness.

Classifioatien: 46005, 52440

Iatrednctien. In (1] we have proved the imsquality

X(H) £ (1= £(1)) oL(M) between the Eamsderff emd Kuretewski
neasures of nencempactness of any beunded subset N of a nexmed
limear space X , where S (.) is the medulus of eemvexity
of the space X . IZ X = H is s Hilbert space, sher 1 - J(1) e
= V3/2 , se that  L(N) £ (V3/2) o(M) fer smy bewnded smbeet
N of H . Here we shewsthat the cemstant V3/2 ocan be replaced
by 1/V2 and that thas last comstant is the best pessidle
provided 'H is imfinite dimemsiemal. This result is an easy
comsequence of ar infinite dimensienal gemeralisatiea of the
Jung theerem giveam here. The infimite dimensiemal Jumg theerem
for Hilbext spaces is swpplied by three preefs. The first preef
is based on lemma 4 (a "mushreem”™ lemma as its preef suggests)
which gives an infermatiem comcerming the distributiem of peints
of a bounded subset M of H near the boundary of the smallest

- 355 =



ball containing M . The second proof uses the classical Jung
theorem ané the reflexivity of H and from this point of view
is the most natumal one. The third (and shortest) one is due
to H. Steinlein [4] and it is published here by hias kind
permission.

The results of this paper have been communicated on the
summer school on "Nonlinear Punctional Analysis and Mechanics™,
Sterd Lesnd, High Tatras, Czechoslovakie, Sept. 223 - 27 (1974);
gee [2].

HNotation. In what follows, H is a real Hilbert space

(it is easy to see that all results below remain true for
complex Hilbert spaces). For M a non-empty bounded subset
of H, B(M,r) is the closed r-ball centered at M (that is,
the set of all points x 4in+H with inf {ix -yl : yc Mi<
<r), C(Mr) = {xcH: B(x,r) D M}, d(M) the diameter
of M, (M) s inf {r>0: C(M,r) # §} the radius of M,
X(M) =inf {r>0: M has a finite r-net in H § the
Hausdorff measure of noncompactness of M and ol (M) =
= in® {d>0: M can be covered by a finite number of sets
of diameter < d 1 the Kuratowski measure of noncompactness
of M ; cocl(M) denotes the closed convex hull of M and
sp(M) the linear span of M . Furthermore, h denoted the
Hausdorff (pseudo-) metric in the space of all non-empty
bounded subsets of H .

Lemma 1. If M and N are non-empty bounded subsetis
of H , then:
1) the set C(M,r) 18 closed, convex and coincides with
the set M iB(x,r) : x€ M} ;
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2) 0<r<R implies C(M,r) — C(M,R) ;

3) M C N implies C(M,r) D C(N,r) ;

4) C(M,d(M)) D cocl(M) D> M ;

5) B(C(M,r),a) C C(M,r + a) for all r, &> 0 ;

6) B(x,r) N Bly,») ¢ BAEFL, (% - |z - y12/8)'/3)
for all x, y6€H and r» > 0 with lx - y\W £ 2r {

) ac,r)) < 2(x® - x0) V2 for a1l r>rw) ;

7°) a(C(M,r)) S 0 a8 r “sr(M).

Proof. The proof is easy and we shall prove only 7), for
example. Let x, y in C(M,r]X be given. Then, by 6),
(x +y)/2 € oM (x® - Ix - 31%/4)"/%) ond hence r(M) <
< (2 - lix - y02/4)'/2 wnich implies the result.

Legma 2. Let M bYe a non-empty bounded subset of H .
Then:

1) N {c(u,r) : » >r(M)} oconsists of a unique point which
we call the center of M and denote by c(M); hence
c(M,r(1)) = {cu)] ;

2) rn —> r(M)+ and x, € G(l,rn) (n > 1) imply

xn———>c(ll).
Proof. Use lemma 1, 7) and the Cantor lemma.

Theorem 1. If M is & non-empty bounded subset of H ,
then there exists a unique smallest ball containing it, namely
the ball B(c(M),r(M)).

Proof. See lemma 2.

The following lemma will not be used in the following but
it is interesting in itself.
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Jonma 3. lLet M and N be non~-empty bounded subsets
of H. Then

1) R C B(N,a) implies C(N,r + a) D C(N,r) and
(M) < (M) +a;

2) |x(m) - r(M| < n(EN) ;

3) lel) - c(MI < (B(M,N).(h(M,N) + x(M) + rEHN 2,

4) r(:) amd c(.) are contimuous with respect to the
Nausdersr psewdo-metric (r(.) is nonexpansive and
o(.) 4s locally Holder of oxrder 1/2).

2roof. 1) is trivial, 2) follows from 1) and 3) 1is
a censaquence of 1) and lesmma 1, 7). The assertion 4) follows
from 2) and 3).

lepmg 4. Let M Dbe a non-empty bounded subset of H ,
¢ = c(M) and r = r(M). Then
¢ € cocl(M M (B(c,r) ~B(c,r - e)))
for each e (O,r).

2roof. We may assume that c = O. Assume, on the contrary,
that 0 ¢ ¥ = cocl(M M (B(0,r)~ B(0,r - ¢))) for some
e ¢ (0,r). Since N 1is a slosed convex set and 0 ¢ N, there
exists a hyperplane E = {y+v : (v,y) = 0] (H> v ¢ 0)
strictly separatimg O and N. Setting B, = {tv+y : t<1,
(yv) = 0} and B, = {tv+y : t>1, (y,9) =03 , we
have 0€ B, and MC By. Let 0 < s< min {2, e/lvi} be
arbitrary and set o= v and r =max {r-e +slvi,
(x2 - (2-8)s ||vl|2)1/2} . It 18 clear that »" € (0,r).

We shall show that M C B(o’,r’). et x in H be
given. Consider two cases:

1) x € By/) M. Then lixll4r -e and hence lx - ¢’ll<
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< Izl + o'l £ (r-e) +slvl <, 1.6, x e B(e)n7).
2) 2 € lzf\ H. Then x =y +ty forseme t >1 and
y with (v,y) = 0. We have
iz - ol = 1xi? + 16712 - 2(e%,x) = (1xI2 + 824wi? -
- 'ntl\vlz < :r2 + lzlvu2 - 2.1]1!\2 - x? . (2-:).!1"24
< r,
1.0. x € B(c',r").
We have shown that X c B(o’,»") with » < r(M), which
is a contradiction. The proof of the lemma is finished.

Ramarke: In the notation of lemma 4, the inclusion

¢ € s0ol(M N 9B(e,r)) is generally false. If dim(HE) > 1
and N is not required to be closed, one easily 'finds coumterw
examples. If M 1is required to de slcszsd, the counterexamples
exist enly in imfimite dimensionsl spaces. For example, if EH is
infixite dimensional, take M = {(1 - 1/n)e, : > 1} where

{ e, : 321} 1s an infinite orthomormal set in H. It is
sasy te see that of(M) = 0, x(M) = 1, but M N IB(0,1) = §
(mexeover, ocecl(M) M 9B(0,1) = §).

Iheoren 2. (The generaliszed Jung theorem.) Let M be
a mon-empty bounded subset of H. Then (M) < a(M)//2".

ixst axeef.- Ve may assume that o(M) = O. Let r = r(M),
d = d(M) end take o < (0,r) arbitrarily. By lemma 4, we
have
0 € cocl(M M (B(0,r) “~B(0,r~0))).
Let a > 0 be arbitrary. Then there are an integer n=> 0,
positive mumbers t,,...,tn and points XypeoerXy in M such
that
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Zilﬂ

n
IxW< & , where x = Zi ;

ty=1 r-eglxl<r (1= 1000,n) and

tixi. We have

lxy - xJHZ = "xiﬂz + l{lel2 - 2(‘1":}) (1, = 1,¢00,1),
and hence

d2>zn

i=1

» n 2 2
-2 21-1 tyxy,xy) = 21_1 thx )+ lxgh© - 20x,xp) >

2 n 2 2
tylxy - xyl© = 21.1 tallxgI© + Nxyl® -

22:-1 ty(r - 024 (r- 9)2 - 2ar =

=2(r- 9)2- 2ar.
A8 e € (0,r) and a >0 are arbitrary, we obtain 2r2£~ dz.
The proof of the theorem is completed.

Second proof. This proof uses the classical Jung theorem
for the case of finite dimensional spaces H ; it says that
r(M) < (n./(2(xz+1)))1/2 d(M) provided dim(H) =n and M is
e non-empty bounded subset of H.

Let M be as in the theorem and consider the system
P = { B(x,d(M)/V2) : x € M}. The assertion of the theorem is
equivalent to the non-emptiness of the intersection of all sets
of the system F. Since F consists of weakly compact (and non~
empty) subsets of H, it is sufficient to prove that F posses-
ses the finite intersection property.

Let XyreeeryX, € M. By the classical Jung theorem,
XypeensXy € B(x,r’) for some x& sp {x1,....xh} » Where

o = ((041)/(2(042))) 2 a(8x;,000023) < a//Z. Henoe

n
x€e M) B(x,,d/V2) ¥ § end the proof is completed.
i=1 i
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Third proof. ([4]) Assume d < r V2. Then
a(1 - (a/2r)2)1/2_ r. Choose r > and dy >d with
a°<rVZ am a’(1 - (2772513112
™ ¢ (r,x°), x,€ H and xi€ M {x,] such that M < B(x,,r")

< r. Then there exist

and ™ - Ix, -x Il £ a° -d. Set x, =x, +
+ (x*/lIlxy - xi)(xy - x) and X3 =X, +
+ (G - a?/2r") /I, - x,ID(x) = X,). Then we have
M C B(xq,d) N Blx,,r") ¢ B(xzd") N Blx,,r*) ¢
C Blxyd"(1 - (2772009 V?) € B(xj,a%(1 - (a772r")3) /3
which contradicts a’(1 - (a°/2r))V2. r,

Bemark. The constant 1/ V2 in theorem 2 is the best
possible, provided H is infinite dimensional. Indeed, let
M= f{ej,05,... | Dbe an orthonormal infinite set in H. Then
a(M) = V2 and x(M) = 1 , because r(M) > r({eqseeereyl) =
= (0/(n+1))"2 for a1l n >0 and B(0,1) D M. (See also
the remark following lemma 4.)

ZTheorem 3. A(M) £ d(M)/ Y2 for each bounded
subset M of H.

Proof. Let d > (M) and M =M, U ...UM with
d(li)é d for i =1,...,n. By theorem 2,

n n
M= Ui (M C U Blety),atuy)/ V2)
n
- U1-1 B(c(M,),d/ V2),
so that X (M) £ a/VZ. Thus X (M) < 4(M)/ V2.

Romark. The constant 1/V 2 4n theorem 3 is the best
possible provided H is infinite dimensional. Indeed, let M

be as in the remark following theorsm 2. Then (M) = V2
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and Y (M) = 1, because d(N) = V2 and r(N) = 1 for each
infinite set ¥ £ M.
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