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ON SOLVABILITY OF THE STOKES PROBLEM IN SOBOLEV POWER
WEIGHT SPACES
Josef VOLDRICH

Abotggc;: This paper deals with the solvability of the
Stokes problem in Sobolev power weight spaces.

Key words: Weighted spaces, Stokes problem, generalized
Lax-Milgram lemma. ’ ’

Classification: T6DO7

1. Introduction. This paper deals with the solvability
of the Stokes problem

(1) -UA3+gradp=.f' in Q,
agivi =g inaq,
ﬂ=¢ ond01,

in a bounded domain SLCR" with a Lipschits boundary, where
V> 0 and Sng dax =Sm¢ .3 dS. In comparison with the clas-
sical case we assume that right-hand sides f,g,? of (1) in-
clude certain singularities which are described by weighted
spaces. Those circumstances make impossible to find a weak
solution in (classical) Sobolev spaces. Moreover, froa the
properties of the right-hand sides of (1) we are able to des-
cribe the behaviour of the solution of (1) near the boundary
using the methods of \ni;htod spaces.
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In order to avoid technical difficulties, we shall con-
sider spaces with weights related to the whole boundary ofL .
In the case of weights related to a part M of the boundary AfLL
where M is a manifold of the dimension less than or equal to
N-1 we can use the same ideas of the proofs.

Fundamental properties of weighted spaces we shall use

can be found e.g. in [1],[2].

Section 2. Troughout this paper {1l will be a bounded
domain in the Euclidean N-space RN with a Lipschitz bounda-
ry OfL . We shall use the distance d(x) of a point x € {L

from O\ defined by d(x) = inf |x-yl . The Sobolev power
yean
weight space w2 ;4,€ ) is defined to be the set of all

functions u defined a.e. on L1 whose (distributional) deriva-
tives I™u with ]| &1 belong to the weighted Lebesgue space
L,(f.;d,€& ) endowed with the norm

Ll = ¢ Sn(\f(x)la at(x) an)'’? .

The space [W"z(ﬂ.;d,e )]N with the norm

N du, (2 N
i, =52 g 2L € ax e 52 ggujﬁ af an)'/?
i,J=1 N dx; J=1 .

.is a Hilbert space. The set [C‘”(K)]N is dense in
[W‘ '2(-11;(1,2 )]N for &€(-1,1) and therefore we can consider
traces of functions from this space on the boundary Ol
(see e.g. [1]).
The weighted analogy of the Sovolev space [WL’Z(.('L)]N
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is defined by the formula [Vll’z(-ﬂ.;d,& )]N = C:(.ﬂ.) where
the closure is taken with respect to the norm |. ﬂt_ .

Further we shall use the shorter notation
L2(€ ) = Lz(ﬂ;d,a ), Lg(& ) ={Y6L2(.ﬂ.;d, £); S‘ch dx=0} ,
vie) = [wh2(a;a,e ], v (e) = [wPa;e,e0]",

where g€ (-1,1). Let By be the space {?e V(& ); div 3= 0}
with the norm "'f. and B“L its orthogonal complement in V°(5 ).
According to the following consequence of Hardy"s ine~

quality
(2) g a*72u;[%ax & cy(n) W g at |Vu;|%ax,
o n

i=1,...,N, eV (E) with &€(-1,1),

we can consider the norm equivalent to Illle ,

2 1
N du.
By, === g a l—‘ll ax )?
€ 1,Jj=1 Ox.
0L i
on the space V_ (€ ).
In the proof of Theorem 2 we shall use the following

lemma proved for example in [2].

Lemma 1. If the derivatives D;p, | £3i £ N, of a distri-

bution p belong to B (=[W“)’2(-ﬂ.)]*), then D€L2(-n-) and

I £ e (V) "grad p“ .
pﬂLz(n’/R 2 ' a]®
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The following Theorems 2-6 imply some properties of
mappings grad and div defined in weighted spaces. Analogous

results concerning classical spaces are proved in f4],f5_].

Theorem 2. There exists a symmetric intervel I, O€int I,
such that for every €6 I the operator grad is an isomorphism
. . »
of the space L,(& ) p onto ite range in [v,(-e)]*.
Proof. The continuity of the operator grad follows from

the estimate

d »* = ad 4 =
hera P'[‘vo(-e ) 3‘2’v0<-e> {gred p, ¥)
"'-: £

= (-X aiv¥dx ) &N .gup - £

€v,(-£) n_p e el Fev (- o) Wil

-y

'ﬂ-‘ &1 v'_e £

‘ N lplt .

Let V be the orthogonel complement of the subspace
{conat} + {d'e/z const} in L,(€) and let p€V, i.e.

g at p dx =0, S d‘/z p dx = O. As the mapping ‘?_’dt/zq
0. Qo
is an isomorphism of [L2(£ )]N onto [Lz(.n.)]N and of V_(0)

onto vo(-g ) (see e.g. [3]) and moreover as ds/zp is orthogo-
nal to the subspace {const} in L,(f), using Lemma 1, HOl-

der’s inequality and the inequality (2) we obtain the estimate

({1

€
¢, fgraa a /zp"

2 1 . He¥2 <
= |d = fId =
'P'; ' Plo U p"‘z(‘”/a [H-I(.Q )]N
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&2
£ ¥omi2an® <o -
-]
19 5

{grad p.dw;’)- {p,V.grad dw)] 4

=z C ]
2 2[&!",'2(:1)]"[
13 1

£ N
g8y ey o nID
L, @

&/2-1

a F.grad d ax| ] €
* ¥t 2an¥ e lS p T 1)
171,46 O

£ 33 '8radrlvo(_£ )]' + Gy ‘tl’lpla

(we use that |vdal€ 1 a.e. inQ). Hence there exists a symme-

tric interval I, O€int I, such that for every £ € I we have

Iplg £ cg(n) Ngraa pl[Yo(-F. )]* whenever p€ V.
Therefore, the set grad[V] is a closed subspace of [Vo(-£ )]*-
Since gred[{_d"/zconst}] is also a closed subspace of the
same space, the subspace grad[Lz(C )] = graalv] +
+ grad [{d"/aqonat}] is closed as well. Now, the null-space
of the operator grad is the space of constants and the asser-

tion of Theorem 2 is a consequence of the open mapping theorem.

Theorem 3. Let € € I. Then the operator div acts from
)
V,(-&) onto Ly(-¢& ).

- 329 -



Proof. The subspace grad[L2(£ )/R] is closed in
[Vo(—t )]“ and hence the adjoint operator div maps the
space vo(-a) onto the anihilator of the subspace Ker[grad] =

= {const] which has the form {ueLz(-E. ); S u dx = 0} .
.

Theorem 4. There exists & symmetric interval I,
O€int I°, and a constant cg such that for every £€I” the
inverse of the operator div: B"L—-bLg(e) satisfies the
estimate

ﬂ aiv™! .

£c..
L(LI(E); V(e)) O

Proof. Since [aiv | LYo,

=
XV, (0); 13(0) )
there exists an element ?evo(O) with l}lo £ 2 satiafying
|aiv i’]o = L. If P denotes the projection of V (€ ) onto B“L ,

we have

bra ¥2nlle € 1N, € e  ITL, & 2¢,,

for every &€I and therefore

: N 7%
div 3 = div(a ?)‘ =
v “x(at; L&)  2°7 | s

= 2%7- 'd"/zdiv ¥ + F.gred d"/zla a

32 rl; [‘d."/zdiv y‘: - Iy.gud d"/zl‘] 3

1
do [ 15l §a-2|;.ma al? an?]2 % [o- teive; ) .
n

L] 4 Y
Ne can choose now a symmetric interval I, O€ int I,' in such
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v
|

a way that "divl for all €€1I”.

E

et ; 1)) i

This completes the proof.

Theorem 5. Let €€ I, ge.Lz(e) and ‘}e V(& ) satisfy

the condition

-»
S‘ g dx = S\ N ds .
0 a.ﬂ.lz

Then there exists J€V(€ ) such that div @ = g in L1,

-»>
g = ¥ on -Ne W

00 =

Proof. Since the set [C (.Q.)JN is dense in V(& ) (see

e.g. [1]) the trace of the vector function L? on O£ makes
. B .

sence and it holds SD_QKP.\) das = _fndlv kF dx. Therefore

we have g - div \?e Lg(e ) and with respect to Theorem 3
there exists 'v?eVO(E) such that g - div ? = div W. It is

sufficient to put T=w+ ¢ .

Theorem 6. Let £e€1I, ?e[vo(—e)]* . Then the following
conditions are equivalent
1/ (f, 3) = 0 for every 368“5 ,

2/ F= grad p for some peLZ( £).

Proof. 3ince the range of the operator grad acting from
Ly(& ) is a closed subspace of [Vo(—é)]* , it follows from
the theory of linear operators that ? is an element of this
range if and only if ? belongs to the anihilator of the null-
space of the adjoint operator, i.e. ?belongs to the anihila-

tor of Ker[div] = Eb_g .
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cti .
Definition. A couple (4,p)€ V(& )x Lg(s) is said to
be the weak solution of the Stokes problem (1) with
-
felv(-e))*, geL,(&) ana Pev(e), if

N du; 9z, S -
v ax - agiv2ax =<3} 2
R W b L

for a11 e [c(n)]",
divid =g in o,
- q on oL,

00
In consequence of the density of [Co(.ﬂ.)]N in V (-¢)
we can consider the first equality for all zevc(- £).
Since f dx =J‘ \F 3 as there exists ¥evV (€)
4\_8 BYo Lo °
satisfying conditions div w = g in L, ¥ =¢ on O\ and

Iy € cgnn,e) [elg + laivgl ] -

Putting ¥y=4- ? we transform the problem (1) to the

homogenous one

(3) -v ¥+ grad p =R in O,
divv =0 in 0,
¥=0 ondOr,

<
where h = ?+ v AW.

Further, we shall study the solvability of (3). Let us
define a bilinear form a: V (& )x v (-¢€ )—»R by the rela-
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tion

N dv. dz.
l(.v',?) =V Z S‘ 'S-i‘.l-s—x-"ldx , 3QV°(£ ), 16\'0(—5.).
i,Jj=1 n i i

From (3) we obtain the equation
4) a@?d = (?1,?) , for all 'ZGB_e .

< »
This equation has unique solution ¥ By for every hE[Vo(-£ )]
. * : . <
with '",_ £ ey Ihlwo(_6 )Ji if the form a(.,.) is elliptic

on Bg x B_, in both its components, i.e.

&

(5) ;uepB’t a(¥y, D) 2 o, l?lle , for all JeBg ,

|!|_‘_ £1

(6) upB a?,2) 2 o, "ﬂ_e , for all ?e.B_e ,
€ By

17l &1
where constants w,(e ),04,(€)> 0. (The proof of this "gene-
ralized Lax-Milgram" lemma can be found in [2], (6] We shall
prove the inequalities (5),(6) for the bilinear form a(.,.)
defined above. Since for ?QB& we have d‘ye vo(-e) and since
the operator div: Bf'e-—-ibg(-t ), E€1°, is an isomorphism
then there exists an element 3 = aiv '[div d‘}’]es}t .
According to div } = 0 and to the inequality (2) we obtain
130 & g |aiv & F|_ = e |at aiv T + £ a*' Juaivaal_, &
€ oo lel- Mg - ae T - e o 4o 7 - AU £ 4TU, ¢, (14 18])

we can write
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£3-3 ., adhdD e ITE el

a(:y", g-o- » = 2
ety - 30, g o)+ lel)
QN E— [U ZN S delly_.ilz dx -
30, oy, (1eleh) L3 ) [
- el v di"|3-@n3i-i\ 1y ax - e, lelUTH2 ] 2
1,351 bxi bxi J 12 3
] 2 N £ |29 2 ’12
r—— L otz -eicz ot 53] a0’
HylE cyy (14 1e]) 2 1,3%1 dq i

1
. L
a3n (et - ]

' Ve, . - gl (o Vey/le-1 + ¢y ,)
TE c  1+1el )

Hence the inequality (5) is fulfiled for every € from a suit-
able interval JCINI", O€int J. Analogously, the inequality
(6) holds for E€ (-J).

Consequently, the equation (4) has a solution Ve,B£ '
for every BS[VO(-a)]*, with €€ JnN(-J) and
sl ¢y, "Ru[vo(-t o - Let €€ JA(-J). Since

(R+oa?d 2y =(R2) -a@D) =0 for a1l Teb_g,
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by Theorem 6 there exists pé€ Lg(e) such that
grad p = nh + v AV, i.e. the couple (¥,p) is the weak solu-
tion of (3), and according to Theorem 2 we obtain the esti-

mate

-
lply £ °M““"[v°<-£ g* v .

Therefore, the couple (d,p) € V(& )x Lg( €), where =7V + W,
is the weak solution of the problem (1) and it holds

(D Nl + Iply € ey 0Py (g + lele + laiv §l ] .
€ & 15 v (-¢)] 3

Remark. In the last inequality it is possible to write

the norm of the trace of \? on O instead of the norm of

div ¢ .

Let us summarize the results of this Section in

Theorem 7. There exists an interval J, O€int J,
such that for every €€ J the Stokes problem (1) has the
unique weak solution (3,p)€[l1’2(ﬂ;d,£ )JNx Lg(.ﬂ.;d,e )y

-

whenever f¢€ ([w;'z(n;d,-a )]N) y B€L,(N5d,¢& ),
> 1,2 N . _ S‘

als ;d ax = 3 as).
\PE[ Qg ,&)) (with S‘ng x an‘? )

Moreover, the solution (%,p) satisfies the estimate (7).
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