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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
25.2 (1964) 

ON SOLVABILITY OF THE STOKES PROBLEM IN SOBOLEV POWER 
WEIGHT SPACES 
Josef VOLDftlCH 

Abatract: Thia paper deala with the solvability of the 
Stokea problem in Sobolev power weight apacea. 

Key words: Weighted apacea, Stokea problem, generalised 
Lax-Milgram lemma• 

Classification: 76D07 

1• Introduction* Thia paper deala with the aolvability 

of the Stokes problem 

(t) - u A 3 • grad p « f in XI, 

div H. » g in Ik9 

if » w OR dilf 

in a bounded domain ULClr with a Li pa chit* boundary, where 

0 > 0 and | g d x * J*CLI dS* In eomPmr^9on wita *»e claa-

sical caae we aaaume that right-hand aide a r,g,y of (1) in

clude certain eingularities which are described by weighted 

spaces. Those circumstances make impossible to find a weak 

solution in (classical) Sobolev apacea. Moreover, from the 

properties of the right-hand aides of (1) we are able to des

cribe the behaviour of the solution of (1) near the boundary 

using the methods of weighted spaces* 
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In order to avoid technical difficulties, we shall con

sider spaces with weights related to the whole boundary bfL . 

In the case of weights related to a part M of the boundary d/X, 

where M is a manifold of the dimension less than or equal to 

Hf-1 we can use the same ideas of the proofs • 

Fundamental properties of weighted spaces we shall use 

can be found e.g. in [l],[2]. 

Section 2. Troughout this paper A will be a bounded 

domain in the Euclidean N-space R with a Lipschitz bounda

ry hSX . We shall use the distance d(x) of a point x €-f! 

from &SX defined by d(x) = inf |x-y| . The Sobolev power 
yc^a 

weight space W1,2(XX ;d,£ ) is defined to be the set of all 

functions u defined a.e. on A whose (distributional) deriva

tives ifu with |«*1 6l belong to the weighted Lebesgue space 

L2(Xl;d,C ) endowed with the norm 

lfl e= ( JJ i<f(x)|
2 de(x) d x ) 1 / 2 . 

JUL 

The space [w1 »2(.a ;d, t ) 3 N with the norm 

in. - ( J * C | ^ | 2 ^ d x * i f K i 2 d « a x i ^ 
i,JXl ^ * j=1 A 

is a Hilbert space. The set [c (XL)] ia dense in 

[w1 »2(XL;d, t )] N for e€(-1f1) and therefore we can consider 

traces of functions from this space on the boundary hfL 

(see e.g. [1]). 

The weighted analogy of the Sooolev space [W1,2(il)JN 
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is defined by the formula [w^ , 2 ( .a;d , £ )]N -= C ^ A ) where 

the closure is taken with respect to the norm B*lle_ • 

Further we shall use the shorter notation 

L2(C ) = L 2 ( . n ; d , £ ), L°(£ ) ={y>€L2(il;d, £); j y> dx=o] , 

v(e ) =- [ w ^ o u d , * )]N, v0(£ ) = [w^
2(xL;d,e )]N, 

where £€ (-1,1). Let B£ be the space (^€VQ(£ ); div • - oj 

with the norm |.|L and B^ its orthogonal complement in V(£ ) • 

According to the following consequence of Hardy's ine

quality 

) \ d'-2|u.|2dx £ c.(A) ' A \ d£ |VUi|
2dx, 

J
A ° U - » r J_o. ° 

0 = 1 N, ufcV (e ) with £€(-1,1), 

we can consider the norm equivalent to II.I 

2 1 
2 

N ľ ,|òu-| 

on the space V (£ ). 

In the proof of Theorem 2 we shall use the following 

lemma proved for example in [2]. 

Lemma 1. If the derivatives D-p, 1 •£ i I N, of a di3tri-

bution p belong to H'^A) ( = [̂ > 2 ( . f l ) ]* ), then p€L2(-TU and 

"P^L (XV), k C2{£1) ^ r a d PUf -1, oH ' L2 (^VR d [H ^IX)] 
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The following Theorems 2*6 imply some properties of 

mmppinga grad and dir defined in weighted spacea. Analogous 

results concerning classical spaces are proved in C4],f 5J• 

Theorem 2. There exists a symmetric interval I, Ocint 1, 

such that for every £6 I the operator grad is an isomorphism 

of the space Î Cfe ) / R onto its range in [V0(-fc )]* • 

Proof* The continuity of the operator grad follows from 

the estimate 

|grad p l - v o ( _ £ )J* • J«W_, (_fc) <«rad p, ? > = 

l*l_e - ' 

* riv (.£) < - J p " » » < - > - * K -riv (-4) i v l t t -« k 

l < -1 *• l < il 

4 H |p|ft . 

Let V" be the orthogonal complement of the subspace 

[const 1 + £d~ ' const} in L2(£ ) and let p€ V, i.e. 

\ d* p dx = 0, j dC/2 p dx » 0. As the mapping t?—-»d*/2(^ 

is an isomorphism of [L2(£ )]
N onto [ L 2 ( . f t ) ] and of VQ(0) 

1/2 

onto V"(-£ ) (see e.g. [3p and moreover as d p is orthogo

nal to the subspace {const J in L^-fl.), using Lemma 1, Hol

der's inequality and the inequality (2) we obtain the estimate 

|plt - la»/2p|0 - .^ / 2P»L 2 ( .O.) / R - -2 •««- - ^ i - g - i ^ j j - 4 
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i c2 f4V'2cn)JH < g r a d d*2p* *> * 
I*M* 

9 c2 Hor |t2(A)j»C<«^ P.**2*>-iP.*v* dV2>3 6 

Wl0*i 

i c 3 [ ! * V (.c) < g r a d p ; , > * 

* lefw1'2(A)]N le| lj d*/2~1p *#grad d tell * 

iV A 

£ c 3 f g r a d p l ^ ^ ^ }j# * e 4 . | * M p | e 

(wt use that lVd|£ 1 a.t. in A ) . Htnct there txists a symme

tric interval I, 0€int I, such that for every £ £ I wt have 

|p|t € c5(XL) |grad pjrv ^ & yi* whentvtr p€V. 

Therefore, tht set grad[v] is a closed subspact of [V0(~£ )J • 

Sinct grad[£d" ' const]] is also a closed subspact of tht 

same space, tht subspact gradfLpCC )J » grad[V] • 

+ grad t{d~ '2conat]J is clostd as wall. Now, tht null-spaea 

of the optrator grad is tht space of constanta and tht asser

tion of Theorem 2 is a constqutnct of tht open mapping theorem. 

Theorem 3. Ltt £4.1. Thtn the optrator div acts from 

V0(-£ ) onto Lg(-£). 
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Proof. The subspace gradTL2(£ )/RJ is closed in 

[v (-t )]* and hence the adjoint operator div maps the 

space V (-£ ) onto the anihilator of the subspace KerfgradJ » 

- {const] which has the form -[u€L2(-fc ); f u dx a 0? . 
•A 

Theorem 4. There exists a symmetric interval I*, 

OCint I*, and a constant Cg such that for every £€l* the 

inverse of the operator div: E£—»L2(&) satisfies the 

estimate 

H * 46(Lg(C); VQ(C ) )
 6 

Proof. Since JJdiv V . • L > 0 , 
H X(Vo(0); L°(0) ) 

there exists an element ^€V Q(0) with O l 0 4 2 satisfying 

| div yj = L. If P denotes the projection of VQ(€ ) onto B^" . 

we have 

|p(d-fi/25T)Bt i id -* / 2 ?n e s c 7 i s r i o fe 2c7, 
for every £ € I and therefore 

I div || , k - 4 - |div(d"*/2?)L -

= - i - |d" f / 2div J • y\grad d~* / 2 | t -

I - £ - [ |d-» / 2div f\t - tf.gr.d d " t / 2 g k 

* 5c" I L " if' ( S «"2I?•««« a|2 dx)fJ « -£- [ L - k| Yc^ J . 

*e can choose now a symmetric interval I. OCint I, in aucb 
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a way tha t | | d i v | . k T~T~ for a l l £ € l ' . 
# ( B £ j L°(£ )) 4 c7 

This completes the proof. 

Theorem 5. Let £ C I , g C L 2 ( e ) and <^£V(£) satisfy 

the condition 

g dx = <2 A> dS . 

in. Js>-a T 

Then there ex i s t s luf€V(£ ) such that div u = g in .fL, 

u = vp on <i*-(V , 
_ 0 0 —• n W 

Proof. Since the set [G (XL)J is dense in V(£ ) (see 

e.g. [ A ] ) the trace of the vector function \2 on OSTL makes 

sence and it holds J N J N Y •*** d3 = j^div W dx. Therefore 
we have g - divyCLpCfi ) and with respect to Theorem 3 

— » • # - * 

there exists w CV ( £ ) such that g - div y = div w. It is 

sufficient to put u = w + vj5 . 

Theorem 6. Let £ c l , f€tVQ(-£)) . Then the following 

conditions are equivalent 

1/ ^ r , v > = 0 for every v*£B_£ , 

2/ f = grad p for some p € Lp( £ ) . 

Proof. 3ince the range of the operator grad acting from 

L~(£ ) is a closed subspace of tv
0(- ̂  )) * It follows from 

the theory of linear operators that r is an element of this 

range if and only if r belongs to the anihilator of the null-

space of the adjoint operator, i.e. f belongs to the anihila

tor of KerfdivJ = b_£ . 
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Section j. 

Definition. A couple (u,p)€V(£ )x Lg(£ ) is said to 

be the weak solution of the Stokes problem (1) with 

f erV0(-£ )J* , gCL^U ) and «jUv(£ ), it 

U SZ1 I - ^ ^ dx - \ p div I dx = < I, t > 

for all t£[CQ
a(A)]N , 

d iv H = g in -A., 

u = vj? on 3X1 . 

In consequence of the density of tG
0(-&)] in v

0 ^~ £ ^ 

we can consider the f i r s t equality for a l l z £ V Q ( - £ ) . 

Since | g dx = J^xif *^ d S t n e r e e * i s t s w>€V<>(£ ) 

sat i s fy ing conditions div w = g i n . f l , $ = Y o n ^^L and 

| » l t § c8(JX, t ) [ |g | t + |aiv?|J. 

Putting v = u* - w we transform the problem (1) to the 

homogenous one 

(3) - o Av* + grad p = "8 in XI, 

div v = 0 in XL, 

$ = 0 on d-CL, 

where h = f + \> &9. 

Further, we shall study the solvability of (3). Let ua 

define a bilinear form a: VQ( £ )x VQ(-£ )—*R by the rela-
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t ion 

• ( 
l | t j - - | *-* 1 1 

St 

From (3) we obtain the equation 

(4) a(vVJ) -= < 3 , t > , for a l l * € B _ £ . 

This equation has unique solution v" € B t for every h€[VQ(--£ )} 

with |v*|fc £ cg |ii|rv , * yi* if the form a(.,.) is elliptic 

on B» x B M > in both its components, i.e. 

(5) sup a(?,t) i ou |?/L , for all ? € B £ , 

(6) sup m{fft) It oc/.̂  |t| - , for all ? € B r , 

where constants ot̂  (£ ),oc/2(£ )> o. (The proof of this "gene

ralized Lax-Milgram" lemma can be found in [2j, (,6j«) ** shall 

prove the inequalities (5),(6) for the bilinear form a(.,.) 

defined above. Since for 3^€BC we have d*?€V (-€) and since 

the operator div: B_ f c—frL^-t), £ 6 l ' , is an isomorphism 

then there exists an element t » div"1 [div diyj€B"^£ . 

According to div $ = 0 and to the inequality (2) we obtain 

JSI-C * c6 ldiv '?!-£ = c6 ld* div ? + $ d'~1 J.div d|.c £ 

i ow\t\mL. AS d*?-*cB_c f |d«?- t i . t i i5rie c,,(1+1*1) 

we can write 
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Iďӯ- П_t * Шt c n(i+iгl ) 

2 

dx -
' O * І • »^—Ь [- sb ţ ^ Ѓ 

Ш e c . , ( , + u i ) L iŕғ í J л ' Ь - І ' 

• Ш u гт£, I -"M-Қиlîíl 1/jl «- - o12 uiiЛ*] -2 1 
1 

• < & J d6"2 | y i | 2 dx)2 - o,2 lentil2. ] * 

* | ? | ° c "~ l e l ( ^ / l e - n +c12> 
6 c n ( l + l t | ) 

Hence the inequal i ty (5) i s fu l f i l ed for every £, from a s u i t 

able i n t e rva l J C l O l ' , 0 € i n t J . Analogously, the inequal i ty 

(6) holds for EC ( - J ) . 

Consequently, the equation (4) has a solut ion v £ B £ , 

for every h € [VQ(- t )"]*", with t C J a ( - J ) and 

Uvl|£ 4 c u ||r?||rv ( - e }-t* . Let e ^ J H W ) . Since 

< r? + o &v, £ > = < n,"z> - a ( v \ t ) = 0 for a l l ?£B__£ , 
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by Theorem 6 there exists p € L 2 ( £ ) such that 

grad p = h + o Av, i.e. the couple (v*,p) is the weak solu

tion of (3), and according to Theorem 2 we obtain the esti

mate 

IPI, - c 1 4 c i s « L v 0 ( - £ ) r + , * ' 8 V 

Therefore, the couple (u*,p) € V( fc )x L 2 ( £ ) , where l! = v + #, 

is the weak solution of the problem (1) and it holds 

(7 ) IS|C + | P | t i c 1 5 [ | ? | [ v ( _ t ) J * • |g | £ + l a iv í? | t ] 

Remark. In the last inequality it is possible to write 

the norm of the trace of 3 on dXV. instead of the norm of 

div y . 

Let us summarize the results of this Section in 

Theorem 7* There exists an interval J, 0€int J, 

such that for every £€ J the Stokes problem (1) has the 

unique weak solution (3,p) € [f1,2(Xl;d, £ )JNx L2(il;d,fc ), 

whenever f € ([*0
,2( A;d f-£ )J

N) , g €L 2(A;d, £ ), 

V^€ [^1,2(JCX;d,£ )] N (with f g dx = C $.3 dS). 

Moreover, the solution (i!,p) satisfies the estimate (7). 
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