Commentationes Mathematicae Universitatis Caroline

Josef Voldřich
 On solvability of the Stokes problem in Sobolev power weight spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 325--336

Persistent URL: http://dml.cz/dmlcz/106305

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

 25,2 (1984)
ON SOLVABILITY OF THE STOKES PROBLEM IN SOBOLEV POWER WEIGHT SPACES Josef VOLDK̇ICH

```
Abstract: This paper deals with the solvability of the Stokes problem in Sobolev power weight opaces.
Key morda: Weighted spaces, Stokes problem, generalized Lax-Milgram leman.
Classification: 76D07
```

1. Introduction. This paper deals with the solvability of the Stokes problem

$$
\begin{align*}
-v \Delta \vec{u}+\operatorname{grad} p & =\overrightarrow{\mathbf{p}} \quad \text { in } \Omega \tag{1}\\
\operatorname{div} \overrightarrow{\mathbf{u}} & =g \text { in } \Omega \\
\overrightarrow{\mathbf{u}} & =\vec{\psi} \text { on } \partial \Omega
\end{align*}
$$

in a bounded domain $\Omega \in \mathrm{R}^{\mathrm{N}}$ with a Lipachits boundary, where $u>0$ and $\int_{\Omega} g d x=\int_{\Omega \Omega} \vec{\varphi} \cdot \vec{U}$ dS. In comparison with the clas-
 clude certain singularities which are described by weighted spaces. Those circumstances make impossible to find a weak solution in (classical) Sobolev spaces. Moreover, from the properties of the right-hand sides of (1) we are able to describe the behaviour of the solution of (1) near the boundary using the methods of weighted spaces.

In order to avoid technical difficulties, we shall consider spaces with weights related to the whole boundary $\partial \Omega$. In the case of weights related to a part M of the boundary $\partial \Omega$ where M is a manifold of the dimension less than or equal to N-1 we can use the same ideas of the proofs.

Fundamental properties of weighted spaces we shall use can be found e.g. in [1],[2].

Section 2. Troughout this paper Ω will be a bounded domain in the Euclidean N-space R^{N} with a Lipachitz boundary $\partial \Omega$. We shall use the distance $d(x)$ of a point $x \in \Omega$ from $\partial \Omega$ defined by $d(x)=\inf _{y \in \partial \Omega}|x-y|$. The Sobolev power weight space $w^{1,2}(\Omega ; d, \varepsilon)$ is defined to be the set of all functions u defined a.e. on Ω whose (distributional) derivatives $D^{\infty} u$ with $|\infty| \mathbb{E}_{1}$ belong to the weighted Lebesgue space $L_{2}(\Omega ; d, \varepsilon)$ endowed with the norm

$$
|\varphi|_{\varepsilon}=\left(\int_{\Omega}|\varphi(x)|^{2} d^{\varepsilon}(x) d x\right)^{1 / 2}
$$

The space $\left[W^{1,2}(\Omega ; d, \varepsilon)\right]^{N}$ with the norm
$\|\vec{u}\|_{\varepsilon}=\left(\sum_{i, j=1}^{N} \int_{\Omega}\left|\frac{\partial u_{i}}{\partial x_{i}}\right|^{2} d^{\varepsilon} d x+\sum_{j=1}^{N} \int_{\Omega}\left|u_{j}\right|^{2} d^{\varepsilon} d x\right)^{1 / 2}$
is a Hilbert space. The set $\left[C^{\infty}(\bar{\Omega})\right]^{N}$ is dense in $\left[W^{1,2}(\Omega ; d, \varepsilon)\right]^{N}$ for $\varepsilon \in(-1,1)$ and therefore we can consider traces of functions from this space on the boundary $\partial \Omega$ (see e.g. [1]).

The weighted analogy of the Sovolev space $\left[w_{0}^{1,2}(\Omega)\right]^{N}$
is defined by the formula $\left[w_{0}^{1,2}(\Omega ; d, \varepsilon)\right]^{N}=\overline{C_{0}^{\infty}(\Omega)}$ where the closure is taken with respect to the norm $\|.\|_{\varepsilon}$.

Further we shall use the shorter notation
$L_{2}(\varepsilon)=L_{2}(\Omega ; d, \varepsilon), \quad L_{2}^{0}(\varepsilon)=\left\{\varphi \in L_{2}(\Omega ; d, \varepsilon) ; \quad \int_{\Omega} \varphi d x=0\right\}$,
$V(\varepsilon)=\left[W^{1,2}(\Omega ; d, \varepsilon)\right]^{N}, \quad V_{0}(\varepsilon)=\left[W_{0}^{1,2}(\Omega ; d, \varepsilon)\right]^{N}$,
where $\varepsilon \in(-1,1)$. Let B_{ε} be the space $\left\{\vec{\nabla} \in V_{0}(\varepsilon) ; \operatorname{div} \vec{v}=0\right\}$ with the norm $\|\cdot\|_{\varepsilon}$ and B_{ε}^{\perp} its orthogonal complement in $V_{0}(\varepsilon)$. According to the following consequence of Hardy's inequality
(2) $\int_{\Omega} d^{\varepsilon-2}\left|u_{j}\right|^{2} d x \leqq c_{1}(\Omega) \frac{1}{|\varepsilon-1|^{2}} \int_{\Omega} d^{\varepsilon}\left|\nabla u_{j}\right|^{2} d x$,

$$
j=1, \ldots, N, \vec{u} \in v_{0}(\varepsilon) \text { with } \varepsilon \in(-1,1) \text {, }
$$

we can consider the norm equivalent to $\|.\|_{\varepsilon}$,

$$
\|\vec{u}\|_{\varepsilon}=\left(\sum_{i, j=1}^{N} \int_{\Omega} d_{d} \varepsilon\left|\frac{\partial u_{i}}{\partial x_{i}}\right|^{2} d x\right)^{\frac{1}{2}}
$$

on the space $V_{0}(\varepsilon)$.
In the proof of Theorem 2 we shall use the following lemma proved for example in [2].

Lemma 1. If the derivatives $D_{i} p, 1 \leqq i \leqq N$, of a distribution p belong to $H^{-1}(\Omega)\left(=\left[W_{0}^{1,2}(\Omega)\right]^{*}\right)$, then $p \in L_{2}(\Omega)$ and

$$
\|P\|_{L_{2}(\Omega) / R} \leqq c_{2}(\Omega) \quad\left\|_{\operatorname{grad} p}\right\|_{\left[H^{-1}(\Omega)\right]^{N}} .
$$

The following Theorems 2-6 imply some properties of mappings grad and div defined in weighted spaces. Analogous results concerning classical spaces are proved in [4],[5].

Theorem 2. There exists a symmetric interval I, O€int I, such that for every $\varepsilon \in I$ the operator grad is an isomorphism of the apace $L_{2}(\varepsilon) / R$ onto its range in $\left[V_{0}(-\varepsilon)\right]^{*}$.

Proof. The continuity of the operator grad follows from the estimate

会 $N|P|_{E}$.
Let V be the orthogonal complement of the subspace
$\{$ canst $\}+\left\{d^{-\varepsilon / 2}\right.$ canst $\}$ in $L_{2}(\varepsilon)$ and let $p \in V$, ie.
$\int_{\Omega} d^{\varepsilon} p d x=0, \int_{\Omega} d^{\varepsilon / 2} p d x=0$. As the mapping $\vec{\varphi} \rightarrow d^{\varepsilon / 2} \vec{\varphi}$
is an isomorphism of $\left[L_{2}(\varepsilon)\right]^{N}$ onto $\left[L_{2}(\Omega)\right]^{N}$ and of $V_{0}(0)$ onto $V_{0}(-\varepsilon)$ (see egg. [3]) and moreover as $d{ }^{\varepsilon / 2} p$ is orthogonail to the subspace $\left\{\right.$ canst\} ~ i n ~ $L_{2}(\Omega)$, using Lemma 1, Horder's inequality and the inequality (2) we obtain the estimate $|p|_{\varepsilon}=\left|d^{\varepsilon / 2} p\right|_{0}=\left\|d^{\varepsilon / 2} p\right\|_{L_{2}(\Omega) / R} \leqq c_{2}\left\|\operatorname{grad} d^{\varepsilon / 2} p\right\|_{\left[H^{-1}(\Omega)\right]^{N^{\leqq}}}$

$\left.\left.=c_{2} \sup _{\in \in\left[W_{0}^{1,2}(\Omega)\right]^{N}\left[\left\langle\operatorname{grad} p, d^{\varepsilon / 2} \vec{v}\right\rangle-\langle p, \vec{*} . \operatorname{grad~d}\right.}{ }^{\varepsilon / 2}\right\rangle\right] \leqslant$ $\left\|\|_{0} \leq 1\right.$
$\leqslant c_{3}\left[\sup _{\substack{ } \nabla_{0}(-\varepsilon)}\langle\operatorname{grad} p, \vec{W}\rangle+\right.$ \| $\|_{-\varepsilon}$!

$\leq c_{3} \|$ grade $\left.\|_{Y_{0}(-\varepsilon)}\right]^{*}+c_{4} \cdot|\varepsilon| \cdot|p|_{\varepsilon}$
(we use that $|\nabla \mathrm{d}| \leq 1$ ace. in Ω). Hence there exists a synetrice interval I, $0 \in i n t I$, such that for every $\mathcal{E} \in I$ we have
$\left.|\mathrm{p}|_{\varepsilon} \leqq c_{5}(\Omega)\|g r a d\|_{\left[\nabla_{0}\right.}(-\varepsilon)\right]^{*}$ whenever $p \in V$.
Therefore, the set $\operatorname{grad}[v]$ is a closed subspace of $\left[V_{0}(-\varepsilon)\right]^{*}$. Since $\operatorname{grad}\left[\left\{\mathrm{d}^{-\varepsilon / 2}\right.\right.$ cons $\left.\}\right]$ is also a closed subspace of the same space, the subspace $\operatorname{grad}\left[L_{2}(\varepsilon)\right]=\operatorname{grad}[V]+$ $+\operatorname{grad}\left[\left\{\mathrm{d}^{-\varepsilon / 2}\right.\right.$ canst $\left.\}\right]$ is closed as well. Now, the null-space of the operator grad is the space of constants and the assurtin of Theorem 2 is a consequence of the open mapping theorem.

Theorem 3. Let $\varepsilon \in I$. Then the operator div acts from $v_{0}(-\varepsilon)$ onto $\mathrm{L}_{2}^{\circ}(-\varepsilon)$.

Proof. The subspace $\operatorname{grad}\left[L_{2}(\varepsilon) / R\right]$ is closed in $\left[V_{0}(-\varepsilon)\right]^{*}$ and hence the adjoint operator div maps the space $V_{0}(-\varepsilon)$ onto the annihilator of the subspace Ker[grad] $=$ $=\{$ const $\}$ which has the form $\left\{u \in L_{2}(-\varepsilon) ; \int_{\Omega} u d x=0\right\}$.

Theorem 4. There exists a symmetric interval I^{\prime}, $0 \in$ int I°, and a constant c_{6} such that for every $\varepsilon \in I^{*}$ the inverse of the operator div: $B_{\varepsilon}^{\perp} \rightarrow L_{2}^{0}(\varepsilon)$ satisfies the estimate

$$
\| \operatorname{div}^{-1}{\mathscr{L L}\left(L_{2}^{0}(\varepsilon) ; v_{0}(\varepsilon)\right)^{\leq c_{6}} .}
$$

there exists an element $\vec{\exists} \in V_{0}(0)$ with $\|\overrightarrow{\vec{y}}\|_{0}\{2$ satisfying $|\operatorname{div} \vec{y}|_{0}=L$. If P denotes the projection of $V_{0}(\varepsilon)$ onto $B \frac{1}{\varepsilon}$, we have

$$
\left\|P\left(d^{-\varepsilon / 2} \vec{y}\right)\right\|_{\varepsilon} \leqq\left\|d^{-\varepsilon / 2 \vec{y}}\right\|_{\varepsilon} \leqq c_{7}\|\vec{y}\|_{0} \leq 2 c_{7},
$$

for every $\varepsilon \in I$ and therefore
$\|\operatorname{div}\|_{\mathscr{L}\left(B \frac{1}{\varepsilon} ; L_{2}(\varepsilon)\right)^{\geq \frac{1}{2 e_{7}}}\left|\operatorname{div}\left(d^{-\varepsilon / 2} \vec{j}\right)\right|_{\varepsilon}=}=$ $=\frac{1}{2 c_{7}}\left|d^{-\varepsilon / 2} \operatorname{div} \vec{y}+\vec{y} \cdot \operatorname{grad} d^{-\varepsilon / 2}\right|_{\varepsilon} \equiv$
$\geq \frac{1}{2 c}\left[\left|d^{-8 / 2} \operatorname{div} \vec{y}\right|_{\varepsilon}-\left|\vec{y} \cdot \operatorname{grad} d^{-\varepsilon / 2}\right|_{\varepsilon}\right]$:
$\geqslant \frac{1}{2 c_{7}}\left[L-\left|\frac{\varepsilon}{2}\right|\left(\int_{\Omega} d^{-2}|\vec{y} \cdot \operatorname{grad} d|^{2} d x\right)^{\frac{1}{2}}\right] \frac{1}{2 c}[L-|\varepsilon| \sqrt{c} ;]$.
Ne can choose now a symmetric interval I; OE int I; in such

This completes the proof.

Theorem 5. Let $\varepsilon \in I, g \in L_{2}(\varepsilon)$ and $\vec{\varphi} \in V(\varepsilon)$ satisfy the condition

$$
\int_{\Omega} g d x=\int_{\partial \Omega} \vec{\varphi} \cdot \vec{v} \text { as }
$$

Then there exists $\vec{u} \in V(\varepsilon)$ such that $\operatorname{div} \vec{u}=g$ in Ω, $\vec{u}=\vec{\varphi}$ on $\partial \Omega$.

Proof. Since the set $\left[C^{\infty}(\bar{\Omega})\right]^{N}$ is dense in $V(\varepsilon)$ (see egg. [1]) the trace of the vector function $\vec{\varphi}$ on $\partial \Omega$ makes sence and it holds $\int_{\partial \Omega} \vec{\varphi} \cdot \vec{U} d S=\int_{\Omega} \operatorname{div} \vec{\varphi} d x$. Therefore we have $g-\operatorname{div} \vec{\varphi} \in L_{2}^{O}(\varepsilon)$ and with respect to Theorem 3 there exists $\vec{W} \in V_{0}(\varepsilon)$ such that $g-\operatorname{div} \vec{\varphi}=\operatorname{div} \vec{w}$. It is sufficient to put $\overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{w}}+\vec{\varphi}$.

Theorem 6. Let $\varepsilon \in I, \vec{f} \in\left[V_{0}(-\varepsilon)\right]^{*}$. Then the following conditions are equivalent
$1 /\langle\vec{f}, \vec{v}\rangle=0$ for every $\vec{v} \in B_{-\varepsilon}$,
2) $\vec{f}=$ grad p for some $p \in L_{2}(\varepsilon)$.

Proof. Since the range of the operator grad acting from $L_{2}(\varepsilon)$ is a closed subspace of $\left[V_{0}(-\mathcal{\varepsilon})\right]^{*}$, it follows from the theory of linear operators that $\overrightarrow{\mathbf{f}}$ is an element of this range if and only if \vec{f} belongs to the aninilator of the nullspace of the adjoint operator, ie. \vec{f} belongs to the anihilator of Ker[div] $=E_{-\varepsilon}$.

Section 3.

Definition. A couple $(\vec{u}, p) \in V(\varepsilon) \times L_{2}^{0}(\varepsilon)$ is said to be the weak solution of the Stokes problem (1) with $\vec{f} \in\left[V_{0}(-\varepsilon)\right]^{*}, g \in L_{2}(\varepsilon)$ and $\vec{\psi} \in V(\varepsilon)$, if
$u \sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial u_{i j}}{\partial x_{i}} \frac{\partial z_{j}}{\partial x_{i}} d x-\int_{\Omega} p \operatorname{div} \vec{z} d x=\langle\vec{f}, \vec{z}\rangle$ for all $\vec{z} \in\left[c_{0}^{\infty}(\Omega)\right]^{N}$, $\operatorname{div} \vec{u}=g$ in Ω, $\vec{u}=\vec{\varphi}$ on $\partial \Omega$.
In consequence of the density of $\left[C_{0}^{\infty}(\Omega)\right]^{N}$ in $V_{0}(-\varepsilon)$ we can consider the first equality for all $\vec{z} \in V_{0}(-\varepsilon)$.

Since $\int_{\Omega} g \mathrm{dx}=\int_{\partial \Omega} \vec{\varphi} \cdot \vec{U}$ aS there exists $\overrightarrow{\vec{T}} \in \mathrm{~V}_{0}(\varepsilon)$ satisfying conditions $\operatorname{div} \overrightarrow{\mathbf{w}}=g$ in $\Omega, \overrightarrow{\mathbf{w}}=\vec{\varphi}$ on $\partial \Omega$ and $\|\vec{w}\|_{\varepsilon} \leqq c_{8}(\Omega, \varepsilon)\left[|g|_{\varepsilon}+|\operatorname{div} \vec{\varphi}|_{\varepsilon}\right]$.

Putting $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{w}}$ we transform the problem (1) to the homogenous one
(3) $-v \Delta \vec{v}+\operatorname{grad} p=\vec{h}$ in Ω,

$$
\operatorname{div} \vec{v}=0 \quad \text { in } \Omega,
$$

$$
\vec{v}=0 \text { on } \partial \Omega,
$$

where $\vec{h}=\vec{f}+v \Delta \vec{W}$.
Further, we shall study the solvability of (3). Let us define a bilinear form $a: V_{0}(\varepsilon) \times V_{0}(-\varepsilon) \rightarrow R$ by the rel-
tion

$$
a(\vec{v}, \vec{z})=v \sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial v_{i}}{\partial x_{i}} \frac{\partial z_{i}}{\partial x_{i}} d x, \vec{v} \in \nabla_{0}(\varepsilon), \vec{z} \in v_{0}(-\varepsilon) .
$$

From (3) we obtain the equation
(4) $a(\vec{y}, \vec{z})=\langle\vec{h}, \vec{z}\rangle$, for all $\vec{z} \in B_{-\varepsilon}$.

This equation has unique solution $\vec{寸} \in B_{\varepsilon}$ for every $\vec{h} \in\left[v_{0}(-\varepsilon)\right]^{*}$ with $\|\vec{\nabla}\|_{\varepsilon} \leqslant c_{9}\|\vec{h}\|_{\left[V_{0}(-\varepsilon)\right]^{*}}$ if the form $a(.,$.$) is elliptic$ on $B_{\varepsilon} \times B_{-\varepsilon}$ in both its components, i.e.
(5) $\quad \sup _{\mathbf{z} \in B_{-\varepsilon}} a(\vec{y}, \vec{z}) \equiv \alpha_{1} \mid \vec{y} \|_{\varepsilon}$, for all $\vec{y} \in B_{\varepsilon}$, $\| \boldsymbol{Z}_{-\varepsilon}^{-\varepsilon} \leqslant 1$
(6) $\sup _{\vec{y} \in B_{\varepsilon}} a(\vec{y}, \vec{z}) \geqslant \omega_{2}\|\vec{z}\|_{-\varepsilon}$, for all $\vec{z} \in B_{-\varepsilon}$, $\|\vec{y}\|_{\varepsilon} \leqslant 1$
where constants $\alpha_{1}(\varepsilon), \alpha_{2}(\varepsilon)>0$. (The proof of this "generalized Lax-Milgram" lemma can be found in [2], [6].) we shall prove the inequalities (5),(6) for the bilinear form $a(.,$. defined above. Since for $\vec{y} \in B_{\varepsilon}$ we have $d^{\varepsilon} \vec{y} \in V_{0}(-\varepsilon)$ and since the operator div: $B_{-\varepsilon}^{\perp} \rightarrow L_{2}^{0}(-\varepsilon), \varepsilon \in I^{\prime}$, is an isomorphism then there exists an element $\vec{s}=\operatorname{div}^{-1}\left[\operatorname{div} d^{\varepsilon} \vec{y}\right] \in B_{-\varepsilon}^{\perp}$. According to $\operatorname{div} \vec{y}=0$ and to the inequality (2) we obtain $|\overrightarrow{\mid}|_{-\varepsilon} \leq c_{6}\left|\operatorname{div} \mathbb{d}^{\boldsymbol{z}} \vec{y}\right|_{-\varepsilon}=c_{6} \mid d^{\varepsilon} \operatorname{div} \vec{y}+\varepsilon d^{\varepsilon-1} \vec{y}$.div $\left.\right|_{-\varepsilon} \leqslant$ $\leq c_{10} \cdot|\varepsilon| \cdot\|\vec{y}\|_{\varepsilon}$. As $d^{6} \vec{y}-\vec{s} \in B_{-\varepsilon},\left\|d^{5} \vec{y}-\vec{\delta}\right\|_{-\varepsilon} \leq \mid \vec{y} \|_{\varepsilon} c_{11}(1+|\varepsilon|)$ we can write
$a\left(\vec{y}, \frac{d^{\varepsilon} \vec{y}-\vec{s}}{\left\|d^{\varepsilon} \vec{y}-\vec{s}\right\|_{-\varepsilon}}\right) \geq \frac{a\left(\vec{y}, d^{\varepsilon} \vec{y}\right)-c_{12}\|\vec{y}\|_{\varepsilon}^{2}|\varepsilon|}{\|\vec{y}\|_{\varepsilon} c_{11}(1+|\varepsilon|)} \overrightarrow{\geq}$
$\geqq \frac{1}{\|\vec{y}\|_{\varepsilon} c_{11}(1+|\varepsilon|)}\left[u \sum_{i, j=1}^{N} \int_{\Omega} d^{\varepsilon}\left|\frac{\partial y_{j}}{\partial x_{i}}\right|^{2} d x-\right.$
$\left.-|\varepsilon| \cup \sum_{i, j=1}^{N} \int_{\Omega} d^{\varepsilon-1}\left|\frac{\partial d}{\partial x_{i}}\right|\left|\frac{\partial y_{j}}{\partial x_{i}}\right|\left|y_{j}\right| d x-c_{12}|\varepsilon||\vec{y}|_{\varepsilon}^{2}\right] \equiv$
$\equiv \frac{1}{\|\vec{y}\|_{\varepsilon} c_{11}(1+|\varepsilon|)}\left[u\|\vec{y}\|_{\varepsilon}^{2}-u|\varepsilon|\left(\sum_{i, j=1}^{N} \int_{\Omega}{ }_{d} \varepsilon\left|\frac{\partial y_{i}}{\partial x_{i}}\right|^{2} d x\right)^{\frac{1}{2}}\right.$.
$\left.\cdot\left(\sum_{i=1}^{N} \int_{\Omega} d^{\varepsilon-2}\left|y_{i}\right|^{2} d x\right)^{\frac{1}{2}}-c_{12}|\varepsilon|\|\vec{y}\|_{\varepsilon}^{2}\right] \geq \geq$
$\geqq\|\vec{y}\|_{\varepsilon} \frac{\Delta c_{13}-|\varepsilon|\left(u \sqrt{c_{1}} /|\varepsilon-1|+c_{12}\right)}{c_{11}(1+|\varepsilon|)}$

Hence the inequality (5) is fulfiled for every ε from a suitable interval $J \subset I \cap I^{\prime}, 0 \in i n t J$. Analogously, the inequality
(6) holds for $\varepsilon \in(-J)$.

Consequently, the equation (4) has a solution $\vec{v} \in B_{\varepsilon}$,
for every $\vec{h} \in\left[v_{0}(-\varepsilon)\right]^{*}$, with $\varepsilon \in J \cap(-J)$ and
$\|\vec{v}\|_{\varepsilon} \leqslant c_{14}\|\vec{h}\|_{\left[V_{o}(-\varepsilon)\right]^{*}}$. Let $\varepsilon \in J \cap(-J)$. Since
$\langle\vec{h}+u \Delta \vec{v}, \vec{z}\rangle=\langle\vec{h}, \vec{z}\rangle-a(\vec{v}, \vec{z})=0$ for all $\vec{z} \in B_{-\varepsilon}$,
by Theorem 6 there exists $p \in L_{2}^{0}(\varepsilon)$ such that grad $p=\vec{h}+u \Delta \vec{v}$, i.e. the couple (\vec{v}, p) is the weak solution of (3), and according to Theorem 2 we obtain the estimate

$$
|p|_{\varepsilon} \leqq c_{14}\left[\|\vec{h}\|_{\left.\left[V_{0}(-\varepsilon)\right]^{*}+\|\vec{v}\|_{\varepsilon}\right] . ~}\right.
$$

Therefore, the couple $(\vec{u}, p) \in V(\varepsilon) \times L_{2}^{0}(\varepsilon)$, where $\vec{u}=\vec{v}+\vec{w}$, is the weak solution of the problem (1) and it holds

Remark. In the last inequality it is possible to write the norm of the trace of $\vec{\psi}$ on $\partial \Omega$ instead of the norm of div $\vec{\varphi}$.

Let us summarize the results of this Section in

Theorem 7. There exists an interval $J, O \in$ int J, such that for every $\varepsilon \in J$ the Stokes problem (1) has the unique weak solution $(\vec{u}, p) \in\left[w^{1,2}(\Omega ; d, \varepsilon)\right]^{N_{x}} L_{2}^{0}(\Omega ; d, \varepsilon)$, whenever $\vec{f} \in\left(\left[W_{0}^{1,2}(\Omega ; d,-\varepsilon)\right]^{N}\right), g \in L_{2}(\Omega ; d, \varepsilon)$, $\begin{aligned} & \vec{\varphi} \in\left[W^{1,2}(\Omega ; d, \varepsilon)\right]^{N} \quad\left(\text { with } \int_{\Omega} g d x=\int_{\partial \Omega} \vec{\psi} \cdot \vec{U} d S\right) . \\ & \text { Moreover, the solution }(\vec{u}, p) \text { satisfies the estimate (7). }\end{aligned}$
References
[1] Kufner A.: Neighted Sobolev spaces, Teubner, Leipzig, 1980.
[2] Nectas J.: Les méthodes directes en théorie des équa-
tione elliptiques, Academia, Prague, 1967.
[3] Voldrich J.: Solvability of the Dirichlet boundary value problen for nonlinear elliptic partial differential equations in Sobolev power weight spaces, to appear in Casopis Prst. Mat.
[4] Teman R.: Navier-Stokes equations, North-Holland Publishing Company, Amsterdam, 1979.
[5] Girauld V., Raviart P.-A.: Finite element approximation of the Navier-Stokes equations, Springer Verlag, 1981.
[6] Sallinen P.: A representation theorem for bounded bilinear forms on Banach spaces, Mathematics University of Oulu, reprint, 1979.

Katedra matematiky VŠSE, Nejedlêho sady 14, 30614 Plzeñ, Czechoslovakia
(Oblatan 6.1. 1984)

