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ON CERTAIN EINSTEIN SPACE-TIME
B. GADEK, K. HEBERLEIN, A. JAKUBOWICZ

Abstract: The subject of the present note is the Rieman-
nian space-time provided with the pseudo-metric tensor (1).
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In the work (1) & classification of four-dimensional ge-
neralized symmetric pseudo-Riemannian spaces hasg been carried
out.

It appears that there are four such spaces and emong them
only one is of signature (+ + + =), namely that which is provi-
ded with the following pseudo-metric tensor on the Cartesian

space R4:
&2t 0 0 0
0 et o 0
(1) (guﬁ.) = )
0 0 0 5
0 0 . 0

A four-dimensional pseudc-Riemannien space of signature

(+ + + =) is called a Riemannian space-time.

Theorem 1., The Riemannian space-time with the metric
(1) is an Einstein space-time of zero Ricci tensor.
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Proof: Computing Christoffel symbols from formula (1) we

have
(2) ]
P14-1 F‘§4--1, remaining
Henoe we obtain the following curvature tensor
3 2t 1
3141 =2 e, R144 =1
3 -2t 2
(3) nz‘a =2 e ’ R244 == 1
remaining R” = 0,
Lp @

¥
ri(.‘“- 0.

On the basis of formula (3) it is easy to check that Ricci

tensor is zero:

R-M"’ = O.

It is sometimes important to give the Petrov-Penrose type

[2] for an Einstein space-time. For this purpose, a subclassifi-

cation to the ranks rp, ;R’ Ty of the curvature temsor ([3];

Theorem 4, page 52) has been carried out:
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Here the spaces .’Ei, Ti are of Petrov type, spaces I, D, O, II,
III, N, M are Penrose subtypes, and empty places mean that the

corresponding type does not exist, and that g =8, i-

R = P

~
rR = C,

On the basias of (3) we have:
(5) rR = 3' ;R = 2,

According to (5) and (4), our space is of the G340 tyPe,
which determines the Petrov-Penrose type N. (8)
Hence we have the following:

Theorem 2. The Einstein space~time with the metric (1) is
of Petrov-Penrose type N,

For this type, the temsor (1) is interpreted as a pure
field of gravity. For the field of gravity (1) we find the equ-
ations of motion, i.e. geodesic curves:
© a) E‘“’*— \1’; §*§”=O
b) g‘g E" é“ = A (A =0 or A0, A-constant).

Substituting (2) and (1) in (6) we get the following sys-
tem of ordinary differential equations:

x+2k1';=0

.
.

-23t=0

-2t 262t a0
=20=>t =k (= const.)
e2t'12+'z1‘:+e'2t§2-A.

(n

(32

.

.

Agsuming the time t to be a parameter for the geodesic cur-
ves determined by the system of equations (7) we get:
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X+2kx=a0

¥-2kya=0
(8) .. 2t .

Z -2 € X + 2
e2t ‘,‘2

e-2t 52 =0

+kz+ et iz

= A,

Solving the system of equations (8) we have the following
formulas for geodesic curves:
2t
t

x =0y + 0, e
2
y-C +C, e
(9) 3774
z =202 2% .2 ci P at e

t=t

Por the motion of a probe particle in a field of gravity
(1) with the initial conditions

((xot Tor Zo» 0))
(iol y.oi ioi 1)
we have the following formules:

1 o 1 - -2t
X=X, +3 X, ~3% e

1 1 »
F=9%-2%*2% ?*

Ty,

(10) » »
+ (zo + X+ ¥y) v 4z, -
1 22 1 .2
“ZT% *t7 Y
t=t (tz0).
On the basis of [1, Theorem 5.2] and our Theorem 2 we get
finally

Theorem 3. There is one and only one Einstein time-space
of type N, which is at the same time a generalized symmetric
space, nanely that provided with the pseudo-metric tensor (1).
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