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ADDENDUM TO THE PAPER ,SOME FIXED POINT THEOREMS FOR
MULTIVALUED MAPPINGS*
Bogdan RZEPECKI

Abstract: Let E be a Banach gpace, M a compact metric spa-
ce, K a nonempty closed convex subset of E, and T a continuous
mapping from K into M. If [ is & K3 -mapping from M=K %o

2% (15)), then there is & point x in K such that x & P(Tx,,x,)
Here we give an application of this result to the theory of dif-
ferential relations.
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Let %(X) denote the family of all nonempty closed convex
bounded subsets of a normed linear space X. The set ¥(X) will
be regarded as a metric space endowed with the Hausdorff distean-
ce dx, i.e.

dx(A,B) = max fxmépA a(x,B), :\2})3 d(x,A)]

for A,B € X¥(X); here the distance between any point x¢ X and sub-
set Q of X is denoted by d(x,Q).

Let (E,ll+ll) be a uniformly convex Banach space, M a compact
metric space, K a nonempty closed convex subset of E, T a sing-
le-valued mapping from K into M, and F a mapping from MxK to
¥ (X). Let us suppose that:

(1) T is continuous on K,

(2) P(+yx) is continuous on M for every x €K, and
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(3) dK(P(x,y1), F(x,y,)) k Ny, - ¥, 1l for all xeM and
Y1»¥o€K and with & constant k<1, Under these hypotheses the-

re exists & point x, in K such that x e F(Txo,xo).

The proof of this theorem resembles that of (5] and there-
fore will be omitted. Our result has applications, whose baaio

ideas are i1llustrated by the example below.

Exemple, Let I = [0,a] and J = [0,h] (O<h<a). Let R®
denote the n-dimensional Euclidean space, L2(J, R™) the Benach
space of measurable functions from J to R® such that [l x| =
= ( f:vl (1)) 2at)1/2< oo , and C(J, R™®) the Banach space of

continuous functions from J to R 2 with the ususl supremum noIrme

We follow here the terminology of (11 and {3]. Suppose that
£:IxR® x R?—s £(R?) is & mapping satisfying the follow-
ing conditions:

(1) t +> £(t,u,v) is measurable on I for each fixed u,v in
R®, and (u,v) —> £(t,u,v) is continuous on R™ x R® for each
fixed te I3

(11) there exists me12(I, R) such that
a  (£(t,u,v), {6t )am(t) for teI and u, v in R™ (& denote the
zero of the space R2);

(141) a4  (£(t,u,vy),2(t,u,v,)) 4 Llvy = v,| for teI and
u, V4, ¥, in \Rn. where LZ 0 is a constant.

We define:

(1x)(t) = [; x(s(as for xe12(J,RD),

K = {x61%(J, R®):|x(+)| & m(t) a.e. in J.

Evidently, K 1s a closed convex bounded subset of L2(J, RD), T
is continuous as a map of K into C(J, an), and T[K] is conditio-

nally compact.
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If xeC(J, R™) and ye K, then the mapping t —> £(%,x(t),
(Ty)(t)) is measurable and therefore has a measurable selector
by Kuratowski and Ryll-Nardzewski (4]. Define P:C(J, R®)x K —>

—> ¥(K) as follows: F(x,y) is the set of all measurable selec-
tors of £(.,x(-), (Ty)(+)).

Let xe C(J, R™) and ¥4s7,€ K, and assume that w, € PF(x,y,).
By Hermes [2] (see [11, Lemma 2,5), there exists a measurable

selector w, of f£(s,x(+), (Ty,)(+)) such that
fwa (8) = wo (D)1 = alw, (¥),2(t,x(t), (Ty,) (t))
on J. Thus, wzeF(x,yz) and

wy (8) = wy(8)| &

LN

d{R n(f(f.x(t).(Ty1)(t)), f(t’X(t)o(Tyz((t)) £

< LI(Ty ) (8) = (Ty,) (%) 2
S

€L f 13108 = yp(e)las =

.

LAy -y,

for teJ. This implies that w, - wyl £ Th Iy, = y,\ . Arguing
again as above, it follows that if Wy € F(x,y2) then there exists
w, € F(x,yq) with lwy = wyll £Lhily, -y, 0.

Consequently, dy(F(x,y1), F(x,y,))2Lhlly; - y,lI for
xeC(J,R™) and ¥1+¥p € K. loreover, modifying our reasoning, we
obtein that x +> F(x,y)(ye K) is a continuous mapping from
c(J, R™) to % (K).

Assume in eddition that Lh< 1. Now, epplying our result to
the space L°(J, R™) and the mepping T, F, we infer that there is
Yo in K such that

v, (B € 2ty f) vo(8)as, [y (s)ds)
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for t in J.
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(Oblatum 16.12, 1983)

Added in proof. When this paper was already submitted, the
author pene o read the work by M. KISIELEWICZ, Generalized
functional-differential eqations of neutral type, Ann. Polon.
Math, XLII(1983), 139-148,

Let A be a nonempty closed convex bounded sudbset of the Hil-
bert space Y, " an operator with domain A and range in the Ba-
nach space X, and G a mapping from A x T"{A] to the standard spa-
ce of all nonempty closed convex subsets of A, In his Theorem
2.4, Kisielewicz proved that if G(.,y) is a contraction uniform-

with respect to y « "[A], G(x,+) is contimuous on I"[A) in
the relative topology and l‘" is completely oontinuous, then the-
re exists x in A such that x €G(x, "x),
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