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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
25.2 (1984) 

ADDENDUM TO THE PAPER .SOME FIXED POINT THEOREMS FOR 
MULTIVALUED MAPPINGS" 

Bogdan RZEPECKI 

Abstract: Let £ be a Banaoa space t M a compact metrio spa­
ce, K a nonempty olosed convex subset of E, and T a continuous 
mapping from K into M« If F i s a K^-mapping from M.xK to 
2K (153) , then there i s a point xQ in K such that xQG F(Txo tx0) 
Here we give an application of t h i s resul t to the theory of dif­
ferent ia l re la t ions . 

Key n,  
s9 differential relations. 

Classification: 54C60t 47H10 

Let $£(X) denote the family of all nonempty closed convex 

bounded subsets of a normed linear space X* The set 36 (X) will 

be regarded as a metric space endowed with the Hausdorff distan­

ce d-rf i.e. 

6V(AtB) • max C«upA d(x#B) t supw d(xtA)3 A x e A x € B 

for AtB &9C(X); here the distance between any point x€X and sub­

set Q of X i s denoted by d(x tQ). 

Let (E, ll-ll) be a uniformly convex Banach space, M a compact 

metric space, K a nonempty closed convex subset of E, T a s ing­

le-valued mapping from K into Mt and P a mapping from MxK to 

3£(X). Let us suppose that: 

(1) T i s continuous on Kt 

(2) y(» t x) i s continuous on M for every x€K t and 
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(3) d ^ C ^ x ^ ) , F(x fy2)) .^ k Oy1 - y2 I) for a l l xeU and 

y 1 f y 2 c K and with a constant k - d . Under these hypotheses the­

re e x i s t s a point x in K such that xQ€F(Tx fx ) . 

The proof of th i s theorem resembles that of C 53 and there­

fore w i l l be omitted. Our resul t has applications., whose basic 

ideas are i l l u s t r a t e d by the example below. 

Example. Let I » Lo fa] and J « Cofh3 ( 0 < h £ a ) . Let ]Rn 

denote the n-dimensional Euclidean space, L (J f R n ) the Banach 

space of measurable functions from J to E n such that II x II • 

- ( f I x(t)l2dt)1 / r 2-<r oo f and C(Jf IRn) the Banach space of 

continuous functions from J to IR n with the usual supremum norm. 

We follow here the terminology of 111 and [33. Suppose that 

f : I x l R n x R.n~~> %( Rn) i s a mapping satisfying the follow­

ing conditions: 

( i ) 1 l—»f(t f u f T) i s measurable on I for each fixed ufT in 

TRn
f and ( U , T ) t—>f(t fu fT) i s oontinuous on IRnxlRn for each 

fixed t e l | 

( i i ) there ex i s t s mcL ( I f R) such that 

d n ( f ( t f u f T ) f ( e U ^ a ( t ) for t c l and u f T in (Rn ( B denote the 
n zero of the space IR ) t 

( i i i ) d n ( f ( t f u f T 1 ) f f ( t f u f T 2 ) ) J 6 L l T 1 - T 2I for t c l and 
-̂  n 

u f T-J f T 2 in |R t where L.£0 i s a constant. 

We defines 

(Tx)(t) - ff x (s (ds for x € L 2 ( J f R n ) f 

K - ix€L2(Jt R n ) t | x ( t ) U m ( t ) a .e . in J$. 

BTidentlyf K i s a closed convex bounded subset of L (J f R ) f T 

i s continuous as a map of K into C(J9 !Rn)f and TEKJ i s conditio­

nal ly compact. 
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If x&C(J , E n ) aad y 6 K , then the mapping t i—> f ( t , x ( t ) , 

(Tv)( t ) ) i s measurable and therefo re has a measurable s e l e c t o r 

b y Kuratowski and Ryll-Nardzewski 143. Define F:C(J , If\n)>vK —> 

—->3C(K) as fo l lows: F ( x , y ) i s the se t of a l l measurable s e l e c ­

tors of f ( . , x ( - ) , ( T y ) ( 0 ) . 

Let x c C ( J , E n ) and y . - y ^ K , and assume tha t w 1 e? (x 9 y 1 )« 

By Hermes C2] (see C13-, Lemma 2 . 5 ) , there e x i s t s a measurable 

s e l ec to r w2 of f ( » , x ( 0 , (Ty2)(*)) such tha t 

lw-,(t) - w 2 ( t ) l = d ( w 1 ( t ) , f ( t , x ( t ) , ( f y 2 ) ( t ) ) 

on J . Thus, w 2 e F ( x , y 2 ) and 

iw-jtt) - w 2 ( t ) l £ 

& d n ( f ( t , x ( t ) , ( T y i ) ( t ) ) , f ( t , x ( t ) , ( T y P ( ( t ) ) ^ 
iR * 

4. H ( T y 1 ) ( t ) - (Ty 2 ) ( t ) l ^ 

r*» 
£ L Jo i y.,(s) - y2 (s) lds £ 

^ L s/lx li y i - y2 ft 

for t e J . This implies t ha t ftw-j - w2 ft £ Lh II y i - y2 R . Arguing 

again as above, i t follows tha t i f w2£.F(x,y2) then there e x i s t s 

w1 e F ( x , y i ) with ll w1 - w2 li £ Lh iiy-j - y2 II . 

Consequently, d&(J?(xty^), F(x,y 2 ) ) .£ Lh ily-j - y2 II fo r 

x £ C ( J , i R n ) and y 1 # y 2 € K . Moreover, modifying our reasoning, we 

obtain tha t x*—> F (x ,y ) (ye K) i s a continuous mapping from 

C(Jf IR11) to £ ( K ) . 

Assume i n add i t ion tha t L h < 1 . Now, applying our resu l t to 

the space L 2 ( J , E n ) and the mapping T, F , we in fe r tha t there i s 

y in K such tha t 
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dded In proof. When th i s paper was already submitted, the 
happened to read the work by M. KISIELEWTCZ, Generalized 

coal-dif ferential equations of neutral type, Ann. Polon. 

Added In 
author 
functional 
Mathf I M I ( 1 9 8 3 ) f 139-148." 

Let A be a nonempty closed convex bounded subset of the Hu­
bert space Y, r an operator with domain A and range in the Ba-
nach space I , and G a mapping from A x Ft A 3 to the standard spa­
ce of a l l nonempty closed convex subsets of A. In his Theorem 
2.4 , Kisielewicz proved that i f G(*,y) i s a contraction uniform­
l y with respect to y e PEAT. G(x f») Is continuous on FlAl in 
the re lat ive topology and P i s completely continuous, then the­
re e x i s t s x in A such that x€G(x , r x ) . 
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