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MORSE-SARD THEOREM FOR CLOSED GEODESICS
). SOUCEK

Abstract: The existence of finite or infinite number of
closed geodesics on a compact Riemannian manifold can be proved
under suitable assumptions. The paper brings another type of
information. It is proved here that the set T of lengths of
all closed geodesics on a real-analytic compact Riemann mani-
fold is always a Adimocrete set. The proof is based on a version
of Morse-Sard theorem for real-analytic maps.
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The classical Morse theorem says that the set T of criti-
cal levels of a function fe Ck:Rn—» R

M =42@|Vve(x) = 0}

has Lebesgue measure zero; '381(]") =0, 1f kZn [1]. The more
refined version [2] asserts that aen/k( T) = 0, where ’éfn/k is
a Hausdorff measure of dimension n/k4&1, If f&C, we obtain

% (T) =0, Ve >0, If the function f is analytic, we can
obtain a better estimate of ™ ., Namely, [3], T is locally fi-
nite; i.e. for every compact set K¢ Rn, the set

PK = {2(x) | V2(x) = 0, x¢ K}
is finite. Clearly, then T' is denumerable.

Analogous theorems hold for a functional defined on a Ba-

nach space if its second derivative is a Fredholm map (and so-



me other , rather technical hypotheses are satisfied, see
14 - 73).
In this paper we prove an analogous theorem for closed ge-

odesics, the functional being the length of a curve,

Theorem 1, Let M be an n-dimensional compact resl ~analy-

tic Riemannian manifold. Then the get M of lengths of all clo-
sed geodesics on M is a discrete set.

Remark, The question of existence of closed geodesics was
extensively studied (see e.g.[9]), and the existence of infini-
te number of them can be proved for some manifolds. The theorem
1 brings on the other hand an upper bound on the number of
lengths of closed geodeslcs.

The real-analyticity means that there is an atlas of charts
covering M, such that transition maps are real-analytic end the
coefficients of a metric written in these charts are real-ana-
lytic, too. In the same way one may prove that when M is only
a C% manifold, the set I has ¥ _(T") =0, Ve >o0.

The set of closed curves in M does not form a linear spa-
ce, and therefore the theorems of [7) cannot be applied direct-

ly. But this set can be endowed with a structure of a Hilberti~
an manifold [8, 9].

Proof., We shall divide it into three steps. In the first
step we recall the definition and some properties of the Hil-
bertian manifold of curves. In the second step we prove the the~
orem using Lemma 1., In the third step we give a rather techni-

cal proof of this lemma.

Step 1. Let S = [0,11 /40,1% be the unit circle and let

us define the set of closed B1-curvee

- 266 -



1
AM = fe38 — M) fo (6(t),é(t))c(t) at < o0}

where { - , -‘)x denotes a Riemannian metric on T M. Let ¢ :S —> M
be a fixed C®-curve. Let us consider the set of all 31-voctor

tields on c, (parametrized by tesS)
E'(o¥ M) = {§ 15— M\ §(t)e T, ()M, <FsE% < 2}
o

where

§emde s [ EDA®% (o 88

(Ern2q = LEs 76 + (9§90 3

the covariant derivative being taken along the curve
(0§ )(%) = (v )(¥).
£ 3,(t) §

There exists an ¢ > O such that [8, 9] the exponential map
(v ,exp)sT™ —> Mx M (x,vx) —> (x,exvax), vee T M
is a diffeomorphism, when restricted to the set

2N . -{(x,vx)s'rl | Kvx l<et.

Here expxx'l‘xl —> M is the standard exponential map. Let us de-
fine

exp°°:H1's(cg‘ ™) — A M
§= (§(8))ygr>e = (c(t))yes
o(t) = expco(t) g(t),

where
B (oxm) = ffeu'(cm) lIg(t)h<e, Viesh
Then the atlas of charts (8, 9]

{exp;l | e e c%®(s,m}

- 267 -



gives to A M the structure of a Hilbertian manifold modelled
on Hilbert spaces H1(o: TM). Moreover, H’(oo"‘ TM) is the tang-
ent space T, A M.

()

The energy of a closed curve c €AM is defined by
1 1, .

E(c) = » fo { c(t),c(t))c(t)dt.

Then [8, 91 E is €%, its Gate8ux differential is given by
4,

dE (e3m) =_j; (¢, onrdt
and dE(cys) = O iff ¢ is a constant map or ¢ is a oclosed geode-
gic. Grad E(c)e T AM is defined by

{grad E(c),n)y = aB(c3n), Yy e T AM

The following basic properties of the energy functional are
known [8, 9]:

(1) (so-called Palais-Smale condition,)

I c e AM, E(cm)é K, K> 0 and |l grad E(om)l|1 —> 0, then
there is a subsequence of {um} converging in AM to a closed geo~
desic Sy

(i1) Let c, be a closed geodesic. Then the Hessian Aco of
E at Cys defined by

A L :T AM—T AM
% % S’

(Acog,n)1 = dzn(co;g,-q), Vf"’t‘ Too_/\.u,

has the form A, = identity + compact map.
(]

Step 2. Let us suppose that there are closed geodesics ¢
such that E(c )—> K<oo, E(om)=¥E(ck), Vk+m. Using (1) we

m

can suppose that c'm—-> L in AM, c, is a geodesic, and that
-‘cmi is in the range of the chart exp, « Let us transport the
o

energy functional on the tangent space

E(§) =B (exp, (§)), VE& TEAU=H E(cXm),
o o
- 268 =



Then §, = exp;’(cm) are critical points of E and Mgy —>0.
o

We want now to apply the infinite dimensional version of the
Morse-Sard theorem [7, Theor. 5.1] to E. But to prove the analy-
ticity ot E, the regularity properties must be used. We follow
the method of [ 7, p. 256]. Let us define spaces

Xy = BB(cXTM) ={§e H'(cX™) | (, £, < @},
<§"7L>2 - <§'n)1 + (VV%,VV*I)O )
0. % .
X, = H(cg M) = 4 15— B AE(De T, ()M, (Fy §5< 3
and consider grad Easa map F:X1 - 12 defined by
dE(§sm) =< ,F(E)),, Ve Xqo
By the standard regularity ergument (similar to that used in the
proof of the regularity of geodesics) we obtain that
EmcXe» “Enuz_’o'
Lemma 1., The functional ‘-E':X1—-> R and the operator FiXy—>
—> X, are real-analytic.
Once we have this lemma, all hypotheses of the theorem 5.1

from [7] are fulfilled and it follows that for a sufficiently
large m we have

E(c,) = E(§ ) = E(0) = E(c,).
Hence the critical levels of E are isolated. Now, it suffices
to show that the energy end the length of a geodesic are inter-
related. If ¢ is a critical point of E, then using variations
generated by the reparametrizations of c, we can find that

6(t)¥ = w = constant. Then E(c) = o2, while
1e) = f'¢3,8rpat =@
o ’ z )

4
go that L(c) = (2E(e))Z .
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Step 3. We shall prove Lemma 1 using the method of[7 ,
P. 256]. We must show that for each £ e X, hE <€ (6> 0
sufficiently small), there is & J° > O, such that for every
1eXq, Bl > < d’ the Taylor series

= 0 4 =

E(g, +1) '.;Eo S EC§ 2 Aseoesx)
converges, It suffices to show that E is a restriction (to X1)
of a map §x11 + 1X4—> X, + iX,, which is locally bounded and
GateBux differentiable [7, Theor. 3.7]. Let Ic S be an interval
such that co(I)cU, U is & co-ordinate neighborhood in M (S may
be written as a finite union of such intervals). Let us define

EL(§) =3 [[€88) at, o(t) = expy (4 (E ().
o

It (11,...,5,1) is a co-ordinate system on U we denote by X(x) =
= (x1(x)y000yx (X)) the co-ordinates of the point x€U. General-
1y, the bar will denote n-tuples, so that

xi(co(t)) = °01(t)' Go(t) = (c°1(t),...,c°n(t)).

Por f ¢ Txl(, x€ U we shall write

C)
TETE NS SIS
x;(exp f) = ei(i(x);f).

Using the summation convention we can write
d —_
T oxp § = by (4, E'?)ﬁ—\ exp, € )
) i o

B (6, Fof) = §p ey (53 §) =

de Qe
9ey i, =ye
'5E;k (Bo3 €) cop +3Tk' (Co3 £ £ 1o

where the dependence of 0,» f » -5'0' ?n? on t was supressed. Us-

ing the co-ordinate form 844 of the metric {+,*> we have
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B () =% JREICH I DR
where

£, . §) = gy 85, Py (6, F L Fomy (8, F, ).
The functions e; are real-analytic [10] and 833 are real-ansly-
tic, too. Thus, they are restrictions (to real values of their
arguments) of holomorphic functions §,, E&d resp. [11; 7, Theor.
3.11], Then functions h, and f are also restrictions of'Ki,'?
defined for ?, g'complex vectors from the neighborhood of allo-~
wed real vaelues of § , ? , ice. I EI, l?l < & (the variable t re-
mains always real)., At this moment we need the regularity, be-
cauge we must know that \§IC1 < €& § this follows from the embed-
ding X1c 01. Clearly, hi and £ are c® in t and we can apply
Lemme 3.1 from [7, App. VI)] which gives us the analyticity of

EI. Equivalently, we can verify that

~ = 1 %+ T T T Tean

E(E) =3 J; B4, F,E) at, T,Fec
is locally bounded and Gatefux differentieble. The proof of the
enalyticity of F; is similar to the proof of Lemma 3.1 [7, App.

VI). Making a finite sum of EI's (resp. FI's) we obtain the ana-
lyticity of E and F.
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