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COMMENTATIONES MATHEMATICAE UNIVERSITAT.S CAROLINAE 
25,2 (1984) 

MORSE-SARD THEOREM FOR CLOSED GEODESICS 
J. SOUCEK 

Abstract: The existence of f i n i t e or i n f i n i t e number of 
closed geodesies on a compact Riemannian manifold can be proved 
under su i table assumptions. The paper brings another type of 
information. I t i s proved here that the se t V of lengths of 
a l l closed geodesies on a real-analyt ic compact Rieraann mani­
fold i s always a discrete se t . The proof i s based on a version 
of Morse-Sard theorem for real-analyt ic maps. 

Key words: Closed geodesies f Morse-Sard theorem. 

Class i f icat ion: 58E10 

The c las s i ca l Morse theorem says that the set V of c r i t i ­
le n 

cal l e v e l s of a function f € C :R —.• R 

r «4f(x)|Vf(x) • (fi 

has Lebesgue measure zero; %^{T) m 0f if k > n [13. The more 

refined version 12] asserts that ^n/jc( D » 0, where ^ n/ k is 

a Hausdorff measure of dimension n/k-41. If feC, we obtain 

'36e(D » 0f Vg > 0. If the function f is analytic, we can 

obtain a better estimate of P . Namely, L3J, P is locally fi­

nite, i.e. for every compact set K c R » the set 

T K . J*f(x) l \7f(x) « 0f xSK* 

is finite. Clearly, then T is denumerable. 

Analogous theorems hold for a functional defined on a Ba-

nach space if its second derivative is a Predholm map (and ao-
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me other. v rather technical hypotheses are satisfied, see 

U - 73). 
In this paper we prove an analogous theorem for closed ge-

odesios, the functional being the length of a curve. 

Theorem 1. Let M be an n-dimensional compact real -analy­

tic Riemannian manifold. Then the set P of lengths of all clo­

sed geodesies on M is a discrete set. 

Remark. The question of existence of closed geodesies was 

extensively studied (see e.g.[93)• and the existence of infini­

te number of them can be proved for some manifolds. The theorem 

1 brings on the other hand an upper bound on the number of 

lengths of closed geodesies. 

The real-analyticity means that there is an atlas of charts 

covering M, such that transition maps are real-analytic and the 

coefficients of a metric written in these charts are real-ana­

lytic, too. In the same way one may prove that when M Is only 

a G°° manifold, the set P has 3tt(V) = 0 , V e > 0. 

The set of closed curves in M does not form a linear spa­

ce, and therefore the theorems of 173 cannot be applied direct­

ly. But this eet can be endowed with a structure of a Hilberti-

an manifold £8, 93. 

Proof. We shall divide it into three steps. In the first 

step we recall the definition and some properties of the Hil-

bertian manifold of curves. In the second step we prove the the­

orem using Lemma 1. In the third step we give a rather techni­

cal proof of this lemma. 

Step 1. Let S » 10,1.3 M0,1^ be the unit circle and let 

us define the set of closed H -curves 
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4 
AM - -f ctS - * M \ J < c(t) »c(t )> c ( t ) dt < OO } 

where < • f • > x denotes a Rieraannian metric on T ^ . Let cQtS —> M 

he a fixed C°°-curve. Let us consider the set of a l l H -vector 

f i e l d s on cQ (parametrized by t eS) 

H1(o*TM) - < | tS~*TM l ^ ( t ) e T 0 ( t ) M f < f , f >,, < 00} 

where 

<f ' U > o - £ <f(*>'n<*)>c0(t) dt. 

<f ' ^ > i - < i ' V o + ^S '^Vo; 
the oovariant derivative being taken along the curve 

( ' P < « - Cv6<(( t )f)(t). 
There ex i s t s an e > 0 such that [ 8 , 93 the exponential map 

(^ f exp) tTM-^ MxM (x fYx) v—> (x fexpxvx) f v x e T ^ 

i s a dlffeomorphismf when res tr i c ted to the se t 

T e M - -\(x fYx)eTM I Hvx l| < eJ • 

Here expxtTxM—>M is the standard exponential map. Let us de­

fine 

exp0 tH
1 *B (c* TM) —> A M 

o 

S- (1(t))tcS*^c * (c(t))tcS 

c(t) - exp0 (t) |(t)f 

where 

H1»£(c*TM) - 4f€H1(c*TM) I » £ (t) H < e t Vt€S}. 

Then the atlas of charts t$» 91 

Гc
o 

i;exp;
1
 I C 0ÍC"(S,II)} 
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gives to A M the structure of a Hilbertian manifold modelled 
on Hilbert spaces H (o* TM). Moreover, H (o^TM) i s the tang­
ent space Trt A M. 

co 

The energy of a closed curve c cAM i s defined by 

E ( c ) " 7 So* c ( t ) f b ( t ) > c ( t ) d t . 

Then [8 f 93 E i s G°° 9 i t s Gateaux dif ferent ia l i s given by 

dE (o%%) • J < c f v i ^ / d t 

and dE(cf») * 0 i f f c i s a constant map or c i s a olosed geode­

s i c . Grad E (c)eT c AM i s defined by 

<grad BCo),^).) - dE(cf<?j)f V ^ e TCAM. 

The following basic properties of the energy functional are 

known [8f 93-

(1) (so-cal led Palais-Smale condition.) 

I f omeAM f E(om)^K f K>0 and }! grad BCOg)!.., —* 0 f then 
there i s a subsequence of «Cam1 converging in AM to a olosed geo­
desic c^f 

oT 

( l i ) Let c be a closed geodes ic Then the Hessian kn of 
0 co 

E at c f defined by 

Ac > I C A « ^ I C AM, 
o o o 

<Ao f ' " I ^ , • ^ V ?»«l>» V f . ^ e T07S.M, 
o o 

has the form A- » identity + compact map. 
co 

Step 2. Let us suppose that there are closed geodesies c 

suoh that E(c m)—> K < co f B(o ̂ BCo-g), \/k*m. Using (i) we 

can suppose that e —-> c in A Mf cQ is a geodesic, and that 

4cm$ is in the range of the chart expc . Let us transport the 
o 

energy functional on the tangent space 

1 ( f ) - B (expc ( f ) ) f Vf € T /AM - H1'e(c0*TM). 
o o 
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Then f » exp~ (cm) are critical points of E and Bf m II -\ — > 0. 
o 

We want now to apply the infinite dimensional version of the 

Morse-Sard theorem T7t Theor. 5.13 to E. But to prove the analy-

ticity of ¥ t the regularity properties must be used. We follow 

the method of E7t p. 2563. Let us define spaces 

X1 * H^c^TM) »-if e H1(c*TM) I <f t f>2 < col, 

<f t%>2 * <§»U>1 + < ^ { ) ^ ) 0 ) 

X2 o H°(cJ TM) - 4f :S -> TM If ( t ) c T c ( t)M f<f t f>0<^?3 

and consider grad E as a map F:X.j —> X2 defined by 

® 5 n ) -<^»yc| )>0, v^fexr 

By the standard regularity argument (similar to that used in the 

proof of the regularity of geodesies) we obtain that 

Lemma 1. The functional E:X^ — > R and the operator PiX-j —•» 

— > *2 ft*^ real-analytic. 

Once we have this lemma, all hypotheses of the theorem 5.1 

from [7] are fulfilled and it follows that for a sufficiently 

large m we have 

E(cm) - E(£ m) - 1(0) . E(c0). 

Hence the critical levels of E are isolated. Now, it suffices 

to show that the energy and the length of a geodesic are inter­

related. If c is a critical point of Et then using variations 

generated by the reparametrizations of ct we can find that 
* 1 2 

Hc(t)H as co « constant. Then E(c) « jCJ , while 

L(c) » f4 < c t c > i dt *- O, 

so that L(c) « (2E(c ) ) l , 
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Step 3 . We shall prove .Lemma 1 using the method of [7 » 

p. 2563. We must show that for each f 0 £ X1 , Hf0Dg < *> (&> 0 

suff ic ient ly small) , there i s a of > 0 f such that for every 

^ € X 1 f \%\ 2< <f t*-6 Baylor ser ies 

converges. I t suff ices to show that E i s a res tr i c t ion (to X-j) 

of a map EtX.j + iX-j —• X2 + 1X2, which i s l oca l ly bounded and 

Gateaux differentiable 17» Theor. 3 . 7 ] . Let I c S he an interval 

such that o 0 ( I ) c U f U i s a co-ordinate neighborhood in M (S may 

be written as a f i n i t e union of such in terva l s ) . Let us define 

E x ( ? ) « £ / < c f 6 > d t f c ( t ) - expc ( t ) ( f ( t ) ) . 

If (x . j f . . . f x : a ) i s a co-ordinate system on U we denote by x(x) « 

» (x.| (x) § . . . fx (x)) the co-ordinates of the point x€U. General­

l y , the bar w i l l denote n-tuples , so that 

x i ( c o ( t ) ) . o o i ( t ) f c 0 ( t ) - ( c o 1 ( t ) f . . . f c o n ( t ) ) . 

For J c TxMt x c U we shal l write 

f - f i - f e j , ' T- « f l - « • ?n>' 
x i(expxf ) - e i(x(x)^f ) . 

Using the summation convention we can write 

f-exp c f - V..f .t>-g-l«p0 f , 
o 1 c Q * 

V t»F4> -fc e i (Vl> -

"5%k c*° l ? ) c°k+gft (vl>fk* 
where the dependence of o0» f » *oQ» £ »"£ on t was supressed. Us­

ing the co-ordinate form g-j* of the metric < • f • > we have 
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where 

«*•?•!) - « i dr tr t 0 i | ) )h i ( t f |
:
f |" )h ; j ( t f f , f ) . 

The functions e i are real -analyt ic [10 ] and g j j are real-analy­

t i c , too. Thus, they are re s t r i c t i ons ( to real values of their 

arguments) of holomorphic functions e.f g^. resp . £11; 7 , Theor. 

3.113. Then functions h.̂  and f are also re s tr i c t ions of h i f 'f 

defined for £* f § complex vectors from the neighborhood of a l l o ­

wed real values of f , f , i . e . I Ji , IJ I < e (the variable t r e ­

mains always rea l ) . At this moment we need the regularity, be­

cause we must know that 1| J ^ < & , this follows from the embed-

ding X-jC C . Clearly, h^ and f are C in t and we can apply 

Lemma 3»1 from [7 , App. VI] which gives us the analyt ic i ty of 

Bj. Bquivalently, we can verify that 

* I ( f } " 2 / x ^ t f f f f ) dt , f , | " € C n 

i s loca l ly bounded and Gateaux differentiable. The proof of the 

analyt ic i ty of Pj i s similar to the proof of Lemma 3.1 f7t App. 

VI]. Making a f i n i t e sura of Ey s (resp . Pj s) we obtain the ana­

l y t i c i t y of I and P. 
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