Commentationes Mathematicae Universitatis Carolinae

Arkady G. Leiderman; Genadij A. Sokolov
Adequate families of sets and Corson compacts

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 233--246

Persistent URL: http://dml.cz/dmlcz/106294

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/106294
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,2 (1984)

ADEQUATE FAMILIES OF SETS AND CORSON COMPACTS
A. G. LEIDERMAN, G. A. SOKOLOV

Abstract: In this paper we construct an example of a Cor-
son compact X for which the space C_(X) fails to be a Linde-

16¢ > -ppace, This example gives the negative answer for one
problem of A.V, Arhangel skii, The notion of an adequate fami-
1{ is used, We establish its connection with the classges of

E e;-:]l.oin and Corson ocompacts and also with some set theoretic
problems.

Key vordi and phrases: Corson compact, Eberlein gong.ot.
adequate famlily of sets, partially ordered set, Lindelof -
space,

Classification: 54C40

1, Introduction, The main result of this paper is the fi-
n;.1 solution of the problem of A.V. Arhangel ‘skil L1]: are the
following conditions

(1) X is a Corson compacty

(2) The space cp(x) is a Lindelof Z-space;
equivalent for a compact space X ?

The most general results concerning the Lindelof property
of the space cp(x) were obtained by K;: Alster, R, Pol [ 5] and
S.P. Gul ko [2] who proved that e © is Lindelot for every
Corson compact X. R. Pol [6] constructed an example of & com-
pact space X with the properties that cp(x) is Lindeldf and X

is not a Corson compact.
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In accordance with M. Talagrand [7], we denote by ‘31
and ¢, the classes of all compact spaces X for which GPCI) is
¥ -anelytic and a Lindeldf = -space respectively.

It is worth while mentioning that the class ‘52 exactly
consists of the compact spaces X, the Banach space C(X) of
whioch L. VaSék [4] calls WCD.

Por classes of Eberlein and Corson compacts we use the
symbols ¢ and X respectively.

M, Talagrand [8] proved € c ¢, and showed in (9] that
these classes are sirictly different, It is well kmown that
¢,c t,, but the question about the coincidence of these clas-
ses is still open. K. Alster and R. Pol [ 5] comstructed an ex-
ample showing that %, 4 X . The inclusion ‘52 cX (i.e. im~
plication (2) => (1) was proved by S.P. Gul ko [3]. Notice
that the same conclusion esasily follows from the L. Va#dk ‘s
work [4].

In this paper we show that the converse inclusion (i.e.
implication (1) => (2)) does not hold. The notion of an ade~
quate family of sets is essentially used throughout the paper.
The definition of bushes is given as a natural generalization
of trees. We construct once more an example of an Eberlein
compact which is not a uniform Eberlein compact. This example
is much simpler than the analogous one of Y. Benyamini and T.
Starbird [10].

All the results with the exception of Example 5.2 are ob-
tained by the first author,

2, Terminology and notation, Our terminology is stan-
dard. The symbol N stands for the set of natural numbers; R
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is the real line; {P?| denotes the cardinality of a set Ty @,
is the first uncountable ordinaly < ={0,1% stands for the
two-point discrete space.

Por a oompact space X we denote by CP(X) the space of all
real-valued functions on X endowed with the pointwise topology.

Por a topological space X let d(X) be the densl ty of X and
o(X) be the Souslin number of X, The closure of a subset Ac X
is denoted by [Al;,

Recall that Corson, Eberlein, strong Eberlein and uniform
Eberlein compacts are the compact subspaces of

S(R,?) =fx¢c RY; Isupp x| « £o3s
where supp x = {te€ T:x(t)+ 0}y

¢o(R,M) = {x e R |{temx(t)l> €3] < » Ve > O}y

6(D,1) ={xeD | supp x| <5}

LR,D ={xe R 2 x(9)1?< w0},
respectively.

A completely regular space Z is a Lindelof = -space if the-
re is a countable collection of closed subsetis {!‘I} peN 8uch
that for each 26 Z the set B, = N { ";sz“‘ ?,% 1s nonempty
and conteined in Z, where (3Z is the Stone-{ech compactifice-
tion of Z. We can assume that the collection §F ¥ .y is closed
under finite intersections, therefore, if U is any neighborhood
of By in Z then B,C rnc U for some ne¢ N.

It (T,4) is a partislly ordered set, then p,q€T are
compatible if there exists se T such that s4&p, s4«q, otherwi-
se p and q are incompatible, (T,<£) is ccoc if T does not con~
tain an uncountable subset of pairwise incompatible elements.
Elements p,q& T are comparable if p<q or q<& p holds, otherwi-
se p and q are incomparable. Every totally ordered subset of

(T,< ) is called a chain.
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3. Construction. The following definition introduced in
{ 7] plays the key role.

Definition 3,1, Let T be a set, 4 family (X of its sub-
sets is called an adequate (n-adequate) if it satisfies the fol-
lowing conditions:

1) A contains all one-point subsets of T.

11) A subset A of T belongs to Ul 1ff every finite (k-
point, k& n) subset of A belongs to L .

It follows from the definition of Ul +that if A € 0L , BcA,
then Be Ol . Put X mXym {7, 3h € A3 DT, where 7, is the
characteristic function of A. As observed in[7], if U is an
adequate family, then X is a compact space., We call X an adequa-
te compact in this case, Evidently, X is the Corson ocompact if

Ol consists of at most countable sets.

The above constructed compact space on the 2-adeqate fa-
mily of sets ocoincides exactly with "the space of ocomplete sub-
graphs of & graph" defined by M. Bell [11],

The property to be & remainder of the counteble discrete
space which he investigates is apart from the subject of our
paper.

A family of all chains of an arbitrary partially ordered
set is the most useful example of adequate families.

Definition 3.2. A partially ordered set (T,4) is called
e bush 1f for every teT the set £ = {seTis<t} is totally or-
dered, A bush is called an A-bush if it does not contain an un-
countable chain., A pairwise incomparable subset of a bush is
called an antichain, Pinally, sn A-bush is an S-bush provided
17| = ¥, and it does not contain an uncountable antichain.

- 236 -



The notion of a bush naturally generalizes the known con-
cept of a tree which we should obtain if we demand that the
sets ’t\ are well ordered. In this case, under the additional as-
sumptions that all levels are nonempty end countable, any A~bush
is an Aronszajn tree and any S-bush is a Souslin tree. An Arons-
zajn troe' which is a union of a countable family of antichains
is called special [13).

4. Results, Henceforth, X = X, 1s an adequate compect; a
is an adequate family of subsets of T. Consider the subset of
cp(x) {d; :teTs {0} , where dy(x) = x(t), xeX and ©
is the constant zero-valued function. It is known [7] that this
set is closed in cp(x) and is homeomorphic with the space ¥ u
= P U{x} endowed with the following topology: T is the disc-
rete subspace of T¥* and every neighborhood of the point ixt
is the complement of finite unions of members of Uf.

The fact that P* 4is closed in cp(x) and separates the
points of X yields

Proposition 4.1. [7]. The space cp(x) is a Lindelot = -
space if amnd only if T* is the same.

Theorem 4.2, Let (T,<) be a bush. Let (L be a family of
its chains and X = X, be an adequate compact. Then cp(x) is a
Lindelof = -space if and only if T is a union of a countable
family of antichains,

Proof: (if). Assume that T -”\GJN- T,, where every T, is an
antichain, Then Tn v{x} 18 the one-point compactification of
the discrete space T, for every ne N, hence, T¥ has the type
K « Consequently, in this case cp(x) has the type K. (ef.L7])
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and, moreover, it is a Lindelof = -space.

(omly if). If cp(x) is a Lindelof X -space then,accord-
ing to Proposition 4.1, the space ™ is the same. By the de-
finition, there is a sequence of sets {P i . and a collectionm
of compacts Bta t for each point teé T so that, for every neigh-
borhood U of the set Bt' there is ne ¥ such that Btc lnc Ue. De-
note by Ay = ¥\ (¥\B,), teT and V, = fteTtecP cA, neX,
The set A; 1s open and contains By, hence, it is clear that the
family {Vn’. ne§ covers T. Observe that the compact By does not
contain an infinite discrete subset, therefore, it follows from
the definition of the topology on T¥ +that for each t€ T the
set B, does not contain an infinite chain. From this we conclu-
de that the set TV, 1s finite, because V,CF c A, and tnV,c
c tn By for every te V,. Denote by

'n’m - &t&vnt "%ﬁvn\ = m, n€n’, n = 0.1.000}.

The set ¥, m 18 an antichain, because it follows from %,< t,,
14

o0
where t,,t,e V,, that [$,nV 1< 1%,n 7, |. Thus T a1 2o "a,m
and every 'n n is an antichain.
’
Corollary 4.3. Let (T,£) be an Aronszajn tree. Then

cp(x) is a Lindeldf X -space if and only if (7,4 ) is special.

Corollary 4.4. Let (T,4) be an S-bush (in particular, a
Souslin tree)., Then X is a Corson compact, for which cp(x) is
not a Lindelof X -space.

Notice that every S-bush contains & Souslin tree. The proof
of this statement, in fact, could be easily extracted from [12].
Thus we have

Theorem 4,5. The existence of an S-bush is equivalent to

the Souslin problem.
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It is known that, by the theorem of J. Baumgartner, if

L g
Martin axiom plus 2 ° > K (MA + TICH) is assumed, then every
Aronszajn tree is special, A slight generalization of the W,

Pleissner s proof [13, p. 18] allows us to establish the analo-
gous assertion for A-bushes,

Theorem 4.6, (MA + 77CH). Let (T,£) be an A-bush and

%
|?l<2 ° Then T is a union of a counteble family of antichains.

K1
Nevertheless, there is an A-bush (T,<) with IT| = 2 © and
which cannot be decomposed into a countable family of enti-
chains, It is the matter of Example S.1.

An adequate compact constructed on an S~bush has some more
properties.

Theorem 4.7. Let (T,£) be an S-bush, Let (£ be a family
of its chains and X = X . Then d(X) = ¥,, o(X) = # .

Proof: X is & subspace of 9T, then A(X)£ |T| = & ,. The
converse inequality follows from the nonmetrizability of X. In
order to prove the remaining part, according to [11, 3.3], it
suffices to show that the partially ordered set (P,<) consist-
ing of all finite elements of (L , partially ordered by A<B
iff BCA, is cco. Suppose, otherwise, that {A }‘,“‘,1 is an un-

countable collection of pairwise incompatible elementis of
(P, <). Denote by m = max {t:t¢c A ?. Since (T,4) contains
no uncountable antiohain, there are distinct o, 3 < @, such
that m < m, . Because @, is a totally ordered subset of
(T,<), 1t follows that A v A/s c GB and the elements A , Ag

are compatible in (P,« ). The contradiction proves the theorem.
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As was shown by A.V. Arhangel ‘sxii (cf.01]) the construc-
tion of such a Corson compact in the framework of ZFC is impos-
sible,

Theorem 4.8. Let X be an adequate compact. Then X is an
Eberlein compact if and only if there is a partition T "iLeJN Ti
such that | supp xnT; | < x, for each x€X and 1€N.

Proof: (if). Denote by ary the projection of X onto T,.
Then the diagonal product Asrigx "’LETN :rri(x) is the homeo-
morphic embedding of X into the countable product of strong E-
berlein compacts. Hence, X is an Eberlein compact.

(only if). Clearly, X is the zero-dimensional compact. For
the zero-dimensional Eberlein compact X the space cp(X,E) has
the type K¢ as it was observed by many authors ([51,L7]). T*
is closed in cp(x,fb ), hence, T*¥ also has the type Kg . Then
™ .Yy T, uix} and every T,u{x} is compact. This means that,
if AcTy and A€ UL , then |Al< % .,

Theorem 4.9. Let X be an adequate compact. Then X is a uni-
form Eberlein compact if and only if there is a partition T =
'&LeJN T; and an integer-valued function N(i) such that
| supp xn T,1<¥(1) for each xeX and i€N.

Proof: (if). The argument is the seme as in the proof of
Theorem 4.8 with the slight difference that sri(x) in this case
is a uniform Eberlein compact.

(only if). We may assume that for each te T the function

Ligy € X+ Then the set 8 = { xm’s 4ep 18 disorete and has 8 uni-
que limit point ® in X. According to [10, Lemma 3], there is
a partition T ',,\,L‘)N " , end neighborhoods Uy for each % 3»
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teT in X such that if t5,%,0..,%,,4 € I are distinct, then

4
:A A U, = P. Without loss of generality we can assume that
- J

each Ut is basic, i.e.
U, =iyeXiy(t) =1, ylut’-! 03, where M,c T, M \< ¥,.

-
Thus My = U rn,m' where [

mz20

nm ™ {te MysiMl = mi. Renum-

bering I, ., we obtain the partition T =, YTy and integer-
’ 1 i
valued functions n(i) and m(i) such that Uy =4{ye Xsy(t) = 1,
Yy = 0%, where M,cT, |M;]| = m(1) for each te€ Ty, and
t

::&;’ Ut;; = f for arbitrary distinct Sya¥p0e0esty(y)€ Ty. This
partition is required. The function N(i) may be chosen as fol-
lows: N(i) = C::;_z, where m = (m(i) + 1)% + 1, n = n(1). To
prove this, suppose on the contrary that there exist x€ X and
i€ N such that |supp xn Ti\ Z N(i). For every Ac supp ani with
JAl = n(i) there are distinct t,s€ A such that UynU, = g, ot-
herwise, 7%, € ), Uy in contradiction with AN #. Refor-
mulate the situation to the language of the graph theory. We
have a graph of N(i) vertices. The vertices t and s are joined
by an edge iff U.nU, = #. This graph has the property that

for every n(i)-tuple of vertices there exists the pair of ver-
tices which are joined by an edge. Then the Erdos-Szekeres ‘s
estimate for the Ramsey problem [ 15, p. 30] yields that there
is a complete subgraph with m vertices. Since m = (m(i) + 1)2 +
+ 1, it is easy to conclude that for some vertice ¢, lMtl >
>m(i) holds. This is a contradiction with our assumptions and

the theorem is proved.

5. Examples. As has been noted, every adequate compact

- 241 -



is zero-dimensional. But any zero-dimensional Corson compact is
not necessarily a compact constructed on some adequate family of
sets. To see this it suffices to take a nonmetrizable first-co-
untable zero-dimensional Corson compact, for instance, the Ale-
xandroff double of the Cantor cube €Ds°. It it were adequate,
then in consequence of nonmetrizability, it would contain a one-
point compactification of the uncountable discrete space in con-
tradiction with the first axiom of countability.

Example S.1, Let Q be the rationals. By 6Q we denote the
set of all bounded well ordered subsets of Q ordered as follows:
s8<t iff S is a proper initial segment of t. €6 Q is clearly a
tree without uncountable chains. Then by L14, Theorems 2.4, 3.3
(11)] it follows that €Q is not special.

The second exemple described below is obtained by the "dou-

bling" of the space constructed in [5].

Example 5.2. Let T be an arbitrary subset of the reel line
R with T} = ¥4+ It can be well ordered by the type &,;. De-
fine the partial ordering on T: s< t iff 8 ig less than t in
both the reals end the ordinals order. Denote by ¢I, and a,
the families of all chains and entichains of (T,& ) respective-
ly. It is well known [13, p. 8] that X = a, v UL2 consists
of at most countable sets, hence X = X;;, is an adequate Corson
compect. Let us observe that, according to the Ramsey theorem
{13, p. 7], every infinite subset of T contains an infinite sub-
set which belongs to the family (f . Show that T* and conse-
quently Cp(X) fails to be a Lindelof = -space, Suppose on the

contrary that there is & femily of compacts {F ¥ from the

n’ neN
Stone-Cech compactification ((T*), closed with respect to fini-

te intersections, and such that for each point xeT* the set
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B, =MN{F:xeF ,neN} is nonempty and contained in T*, Every
set B 1s compact, therefore it is finite, and since JTI =, it
13 easy to see that some Bx is different from any Fn' We can sup-
1 4 Fni* BX

for each i« N. Pick up points xye& Fni\ Fn1+1' The set {xi§ 1eN

pose that By =iQNFni’ where {ng} c N and Fni: Fni+

ig infinite, hence, it includes some infinite subset which be-
longs to 4 . Without loss of generality we can assume that
the set {x} ; o hes itself this property. Then, on the omne hand,

ixt goy 18 o discrete subset of T* and, on the other hand,from

¢ tQ.QN [-{xi}, iz k}][&(T*) C"\«QNFni = BxCT*

it follows that the set -ixi} ieN has a limit point in T* ., This

contradiction proves the agsertion.

Example 5.3, Denote by £L the set of all ordinal numbers
less than <, and put T = Q< £, Partial ordering on T is:
(olqs 1)< (etyy f3y) 188 Ky <Xy, [34 > (3,. Every chain of
(T, £) is finite., Indeed, if {tJ ; y is & chain, where t; =
= (L4, (3y), then we can assume that o, <(,<..., hence (3,>
> {35 > +os holds, which is impossible. (T, £) has the following
property: for any its partition at a countable family of subsets
at least one of the subsets conteinsg chains with any finite
lengths., Let us prove this cleaim, If T =%t‘JN An for each &« & -Q,
neN, denote by A"ri’ ={fBell:(x,B)e A}, ThenmLsJNA;f = £} and

@ 4 =msgpN sup A*;:’. One easily sees that for each « © L) there
exists ne N such that sup A‘x’l" = ,. Consequently, there exist

Mc D, \Mi=25, and n €N such that sup A = w,, for eve-
o
ry o € I , We claim that for every natural k the set Aﬂo con-

tains a chain with the length k. To prove this let us renumber

naturally the first k elements of (M:oly< Ky <eoo KLye Chooge
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“x-1

a point ﬂk“n « Then sup A, = @, implies the existence
]
of Bk 1&Ank+1 with [Ek 1> ﬁk. Proceeding by induction we ob-
tain the finite sequence f3, <3, ;<...<[3;, where f3;¢ Ln .
Clearly, {(ccy, ﬁi)} ia1 18 the chain and is contained in A .
)

If X is en adequate compact constructed on the family of
all chains of (T,£ ) then, evidently, X is a strong Eberlein
compact but it is not a uniform Eberlein compact by virtue of
Theorem 4.9.

The same example shows that for an arbitrary partially or-

dered set Theorem 4.2 is not true.

The authors express their gratitude to S.P. Gul “ko for nu-

merous helpful discussions and encouragement.

Remarks. Recently we have been informed that K. Alster
and R. Pol proved that their example from [5] has the same pro-
perties as our Corson compact in Example 5.2.

Also, after this paper had been prepared for print, we dis-
covered that D. Kurepa, in the paper Ensembles Ordonnes et Rami-
fies, Publ. Math, Univ. Belgrade 4(1935), introduced the notion
of pseudotrees which coincide with one of our bushes. But our

classes of bushes are investigated with other purposes.
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