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ON REGULAR RING-SEMIGROUPS AND SEMIRINGS
). ZELEZNIKOW

Abstract: Regular and orthodox ring-semigroups and semi-
rings are characteriged, as well as ring-semigroups with chein
conditions on idempotents and principal ideals, Congruences
on additively regular semirings are also considered.
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1, Introduction: In a semigroup (S,.) we put E = {eeSs
162 = e} and V(x) = {a€eS:ix:8.x = x and a.x & = a§ for all
x6S., If V(x) = 1 , then the element x is said to be regular.
If each element of S is regular, then the semigroup S is said
to be regular., If S is a regular semigroup, and E is a subse-
migroup of S, then S will be said to be an orthodox semigroup.
A regular semigroup in which e.f = f.e for all e,fe E, is said
to be an inverse semigroup.

We use the definitions and notation of [11,

A semigroup (S,+) is a ring-semigroup if there exists a
binary operation +:Sx S — S such that (S,+,+) is a ring.

In [12], the structure of orthodox ring-semigroups was
considered. Such semigroups are inverse. In the proof of this

theorem, the concept of an additivelv inverse semiring is re-

quired.
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Definition 13 A triple (S,+,+) is & semiring if S is a
set, and +,+ are binary operations satisfying
(1) (S,+) is a semigroup,

(41) (S,) is a semigroup,
(111) a-(b + ¢c) = a.b + a-c, (a + b)ec = @aec + bec , for

all a,b,c¢ S.

Definition 23 A semiring (S,+,+) is said to be an additi-

vely inverse semiring if (S,+) is an inverse semigroup.
The following theorem of Karvellas allows us to prove many

results for additively inverse semirings.

Result 3: ([7) Theorem 7.)
In an additively inverse semiring (S,+,-), if as aSnSa for

all ae S, then S 1s additively commutative (and hence a semilat-

tice of groups).
In a semiring (S,+,*) we put EH]- {xe8:x + x = x% and

B - fecSie-e = of.

2., Regular ring-semigroups: We can now prove:

Result 4: ([12) Theorem 9.)
Let (S,+,+) be any additively inverse semiring in which

(S,-) is regular. Then the following conditions are equivalent:
(1)  Ve,teEPY, (out = 0= tee = 0).
(11) VecEM), Vxes, (erx = 0=> x.e = 0).
(i11) VneWN , Vxes, (x® = 0=>x 5 0).
(iv) V¥ xes, (x2 = 0=> x = 0).
(v) Vx,yeS, (xoy =0 =p yex = 0),

Purther, each is implied by
(vi) (S,¢) is orthodox.
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Example 5: In an arbitrary regular semigroup (S,+), condi-
tion (1) of Theorem 4 does not imply condition (1ii), and (S,e)
being orthodox does not imply condition (ii). To see this we may
take any Brandt semigroup S = M°(G,I,I,A) in which {1122,

Thus this semigroup cannot be the multiplicative semigroup
of an additively inverse semiring.

Result 6: ([12] Theorem 13.)

In a regular ring-gemigroup (S,+) the following conditions
are equivalent:

(i) (8,+) is orthodox.

(ii) VYe,teE, (esf = 0=> f.e = 0).

(iii) VeeE, VxeS, (eex = 0= xe = 0).
(iv) ¥YreWN , Vxes, (xF =0=>x =0).
(v) VYxes, (x> =0=>x =0).

(vi) Vx,5€S, (x+y = 0= y-x = 0),

(vii) (8,*) is inverse.

Exemple 7: (i) Take (R,+,+) to be a regular ring in which

(R,~) is not orthodox. Set 5 = Rufal where a ¢ R and define

r+a=a+r=r,8a+8-=a3as=r. =28 for all rgR. Then
(S,+,+) is e semiring in which ($,+) is regular and a is the ad-
ditive and multiplicative ze-o of u, Hence (S,+,+) satisfies con-
dition (v) of Result A, but is nct orthodox.

(ii) Let (S,+) be a semilattice with |S| =22 and define
4ey = x for all x,ye S. Then (S,+,+) is an additively inverse se-
miring in which the multiplicative semigroup is orthodox but not
inverse,

Lellement ({81 Theorem 4.6) has rroved that a primitive re-
gular ring-semigroup is a group with zero adjoined. In particu=-
lar, a completely-O-simple ring-semigroup is a group with zero

adjoined.
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Define a partial order on the set of idempotents E of a
semigroup S by: f£<e if and only if f = e.f-e. A nonzero idem-
potent e is primitive in S if for f€E, O*f4e implies £ = e,
The semigroup S satisfies Min - E if the minimum condition holds
for E under the specified order; Max - E is defined dually., If
xeS let

J(x) = {x}uxSuSxuUSxS

denote the prinecipal (two-sided) ideal generated by x, and
I(x) = {yed(x):J(y) & J(x)¢

the set of nongenerators of J(x). Then S is called completely
semigimple if for each nonzero x€S, the Rees quotient semi-
group J(x)/I(x) contains a primitive idempotent, in which case
every nonzero idempotent of J(x)/I(x) is primitive., We let
Min - J signify the minimum condition on the set of principal
ideals of Sy Max - J is its dual.

A ring is gemiprime if it conteins no nonzero nilpotent
(one-sided) ideals, end gritinian if it satisfies the minimum
condition on right ideals. A ring is atomic if it is a (direct)
sum of minimal right ideals.

As s generalization of Lallement ‘s theorem we have the fol-

lowing result.

Result 8: ({51 Theorem 4.)

Por a semigroup S, the following conditions are equivalent:

(i) S is completely semisimple and satisfies Min -~ J.

(ii) S is completely semisimple and satisfies Min - E,

(1i1) s is regular and satisfies Min - E.
Purthermore, if S is a ring-semigroup, then (1),(ii) and

(11i) are equivalent to each of the following conditions:

T - 132 -




(1v) (8,+,7) is & semiprime atomic ring.

(v) (S,+,*) is a direct sum of dense rings of finite-rank

linear transformations of vector spaces over division rings.

Example 9: Whilst the equivalent conditions (1),(ii),(iii)
of Result 8 imply that S is regular with Min - J, the converse
does not hold, even for rings with identity. To see this, oonsi-
der the full ring of linear transformations of an infinjite-di-
mensional vector space. Thia ring is regular ([9)], Theorem 7.3)
with Min - J ({10}, Theorem 1.4.2) but does not satisfy Min - E,
since the projections onto an infinite descending chein of sub-
spaces give rise to an infinite descending chain of idempotents.

Result 10: ([5] Theorem 5.)
Por a semigroup S, each of the following conditions implies

the next,

(1) S 4is completely semisimple and satisfies Mex - J,

(ii) S is completely semisimple and satisfies Max - E.

(111) S is regular and satisfies Max - E.

Purthermore, if S is & ring-semigroup, then conditions (1),

(i1) and (1i1) are equivelent to each other and to the condition:

(iv) (S,+,+) is a semiprime artinian ring i.e. & finite
direct sum of full metrix rings over division rings.

Exsmpile 11: (i) The bicyclic semigroup (3 (p,q) =
= {p,q:pq = 14qp>» is regular and satisfies Max - E but not
Min - E ([1) Theorem 2.53), Moreover it is not completely semi-
simple, Thus in Theorem 10, condition (iii) does not imply condi-
tion (4i) for non-ring-ssamigroupe.

(ii) Let C, be the chein of length n, n22. Suppose these
chains have a common zero element O. Taeke E to be the O-direct

union of Cn, nZz 2, Then E is a gemilattice satisfying Max - E and
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Min - E. The Munn semigroup, Tg of E ([6] Section V.4) is an in-
verse semigroup with E as its semilattice of idempotents (and
thus is completely semisimple by Theorem 8) but does not satis-
fy Max - J.

Thus in Theorem 10, (ii) —» (i) is not valid for non-ring-
senigroups.

(1i1) (2] Examples (a),(d) page 805 give examples of regu~
lar ring-semigroups which:

(a) have only two principal ideals but do not satisfy
Max - E or Min - E,

(b) are completely semisimple but do not satisfy Max - J,
Min - J, Max - E or Min - E,

3. Congruences op regular semirings: Semirings in which
the additive semigroup is inverse and the multiplicative semi-

group is regular (and hence the additive semigroup is a semilat-
tice of abelian groups) are considered in [11]),[13]. These pa-
pers also consider the cese in which the multiplicative semi-
group is simple or O-simple,

esult 12: ([4))
In a semiring (S,+,«) the additive Green s relations

£,R,X,D,T are congruences on the multiplicative semigroup
(s|°)o
A semigroup (S,) is said to be congruence-free if the on-

1y congruence relations on S are 43 and SxS. Thus & congru-
ence-free semigroup is simple or O-simple, since if I is an i-
deal of S, Py defined by @ = (IxI) v 1g, is a congruence
relation on S.

A band (S,¢) is left (zight) regular if axa = ax (axa =

= xa8) for all a,xe S,
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Lemma 13: Take (S,+) to be a regular semigroup on which
¥ (R) is trivial., Then S is a right (left) regular band i.e.
a gemilattice of left [right] zero se oups

Proof: Take x,a€S and a’c V(a). Then afa’a and thus

& = a’a. Hence a° 28 = 3'xexa ¢

= a(a’a) = a. Now Slaxass
cs'axe and so S'axa = S'xa 1.e. axe £xa. Thus axa = xa for

all a,xeS. 0O

Corollary 14: Take (S,+) to be a reguler semigroup om which
D is trivial. Then (S,°) is a semilattice.

Proof: Since &= R = 15, S is both & left and right re-
gular band and hence a gemilattice, (1

A semiring (S,+,) is said to be completely simple if the
additive semigroup is completely simple and the multiplicative
semigroup ie either completely simple or completely O-simple.

Theorem 15: ([13) Theorem 24). Take (S,+,*) to be & comple-
tely simple semiring,

(1) If the multiplicative semigroup is completely O-simp-
le, then the semiring is & division ring.

(i1) If the multiplicative semigroup is completely simple,

then the additive semigroup is & rectangular band and the mul-
tiplicative semigroup is & product of two completely simple se-
migroups S = I x A and the operations on the semiring S are
given by

(1,2) + (J, ) = (1, )
(i,h)'(d,ﬂo) = (1'jph'f")
for ell i,jeI, A, e A,

Theorem 16: Take (S,+,°) to be & semiring in which the ad-
ditive semigroup is regular and the multiplicative semigroup is
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congruence~free. Then the additive semigroup is either a group,
s semilattice, a left zero band or a right zero band.

Proof: By [3] Lema 2 (i), the set EI*) is an idesl of
(s,*). Since (8,*) is simple or O-simple, Ef*d 2 308 or M) .
= S. Since (3,+) is a regular semigroup, it is either a group
or a band.

Becauge J° 15 a congruence on the multiplicative semigroup
(8,4)y T = 1gor T=s5xs.

(1) In the case "= 1
Corollary i4, since <J < T .

S then (S,+) iz a semilattice by
(1i} When "= Sx S, (S,+) is a simple semigroup.
(a) X=L=R=9D= 13.

Then (S,+) is a simple semilattice and thus the trivial group.
) ¥ =L -= 'ls, R=D = SxSs.

Then (S,+) is right simple and a band. Thus, by [1] Theorem

1.27, S is the direct product of a group and a right zero band

end thus is a right zero band since K= 1
() X=Ra 15, £=T = Sx5.

By symmetry, (S,+) is & left zero semigroup.
{(d) X = 8S=8.

S

In this case (S,+) is & group. [

Example 17: We provide examples of semirings in which the
additive semigroup is regular and the multiplicative semigroup
is congruence-free, as in Theorem 16,

(i) Take (S,+,*) to be the two element field. Then (S,-)
is corngruence-free, Here (S,+) is a group.

(ii) The two-element chain has as its multiplicative se-
migroup a congruence-free semigroup. Here (S,+) is a semilatti-

ce.
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(1ii) "Teke (S,-) %o be any congruemce-free semigroup.
Define the binary operation +:SxS - S by x + y = x for all
x,y €S, Then (S,+,*) is a semiring in which the additive se-

migroup is a lefi-zero band.

Theorem 18: Take (S,+,+) to be a semiring im which (S,+)
is a reguler semigroup and (S,¢) has & unique non-trivial con-
gruence. Then the additive semigroup is either a group, & ss—
milattice of groups, & semilattice of left zero bands, a semi-

lattice of right zero bands, & left group or a right group.

Proof: Denote by @ the non-trivial congruemnce on (S,).
Since XsLcDeT and Xs RcDeT, we have that eit-

her £ SR or R £ . We shall only consider the cases in
which & € R , since the results for R S will follow by
symmetry.

1) L =R =9 = 1ge
By Corollary 14, (S,+) is a semilattice.

(11) X =¥ =R =3I a &,
Clearly, a regular semigroup in which £ =R is a semilatti-
ce of groups.

(111) K =L =R =D =pcTa=sxs,
In this case, (S,+) is a semilattice of groups and also sim-
ple since ¥'= Sx S. Hence (S,+) is a group.

We now consider the case in which £ ¢ R .

(1v) 1g=K=L R =« DT & Sxs.

Since ¥, is trivial, by Lemma 13, S is a right regular
band, i.e. a semilattice of right zero semigroups.

The other cases were considered in Theorem 16 or follow

by symmetry.
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