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COMMENTATIONES MATHEMATICAE UNIVERSITAT.S CAROLINAE 

25,1 (1984) 

ON REGULAR RING-SEMIGROUPS AND SEMIRINGS 
J. ZELEZNIKOW 

Abstract? Regular and orthodox ring-semigroups and semi­
rings arT^EaracteriBed, as well as ring-semigroups with chain 
conditions on idempotents and principal idea l s . Congruences 
on addit ively regular semirings are also considered. 

Key words: Ring-semigroup, addit ive ly inverse semiring, 
orthodox semigroup, congruence, Green's re la t ions . 

Class i f icat ion! Primary 16A78 
Secondary 20M75, 16A30 

1» Introduction! In a semigroup (S,») we put B • { e e S i 

f2m%\ and V(x) - {aeS!X»a*x « x and a«x a • a* for a l l 

z « S . I f V(x) **> U , then the element x i s said to be regular. 

I f each element of S i s regular, then the semigroup S i s said 

to be regular. I f S i s a regular semigroup, and E i s a subse-

migroup of S, then S w i l l be said to be an orthodox semigroup. 

A regular semigroup in which e»f » f*e for a l l e , f e E , i s said 

to be an inverse semigroup. 

We use the def ini t ions and notation of C13. 

A semigroup (S,») i s a ring-semigroup i f there e x i s t s a 

binary operation +:Sx.S—> S such that (S , + ,«) i s a ring. 

In 1121, the structure of orthodox ring-semigroups was 

considered. Such semigroups are inverse. In the proof of th i s 

theorem, the concept of an addit ivelv inverse semiring i s re­

quired. 
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Definition 1i A triple (St+tO ia a semiring if S is a 

set, and +t• are binary operations satisfying 

(i) (St+) is a semigroup, 

(ii) (S,-) is a semigroupt 

(iii) a*(b + c) « a.b + a*o, (a + b)*o • a#c + b*c 9 for 

all atbtoc S. 

Definition 2t A semiring (S t+ tO is said to be an additi-

vely inverse semiring if (St+) ia an inverse semigroup. 

The following theorem of Karvellas allows us to prove many 

results for additlvely inverse semirings. 

Result 3: (173 Theorem 7.) 

In an additively inverse semiring (St+t-)t if as aSnSa for 

all ae S, then S is additively commutative (and hence a semilat­

tice of groups). 

In a semiring (S,+t») we put E » -Cxe S:x + x « xi and 
C-l <. i 

E • (ec S:e*e * er. 

2. Regular ring--semigroups: We can now prove: 

Result 4: (112.1 Theorem 9.) 

Let (St+tO be any additively inverse semiring in which 

(S,*) is regular. Then the following conditions are equivalent: 

( i ) V e t f e E C O
 t (e*f « 0=* f** « 0 ) . 

( i i ) Ve*E c ' 3
 t V x e S , (e-x » 0 « > x-e - 0 ) . 

( i i i ) . V n € «4 t V x e S , ( x n « 0~-> x « 0 ) . 

( iv) V x 6 S , (x2 « 0 ^ x = 0 ) . 

( T ) V x t y € S t (x*y « 0 -=£• y x = 0 ) . 

Further, each i s implied by 

(v i ) (S t«) ia orthodox. 
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Example 5: In an arbitrary regular semigroup (S fO f oondi-

tion (i) of Theorem 4 does not imply condition (ii)f and (S fO 

being orthodox does not imply condition (ii). To see this we may 

take any Brandt semigroup S » fliP(GfIfIf A ) in which t U > 2 . 

Thus this semigroup cannot be the multiplicative semigroup 

of an additively inverse semiring. 

Result 6: ( £121 Theorem 13-) 

In a regular ring-semigroup (S fO the following conditions 

are equivalent; 

( i ) ( S , 0 i s orthodox* 

( i i ) Ve , f e E , (e*f » 0 * - * £ • • - 0 ) . 

( i i i ) V e eE, V x c S , ( e .x * 0 =-» x*e * 0 ) . 

( iv) V r e l N , V x £ S f ( x r = 0 ~ - > x = 0 ) . 

(v) Vx&S, (x2 = 0 = » x = 0 ) . 

(vi) V x j c S , (x • y = 0 =-* y x = 0 ) . 

(v i i ) (3,*) i s inverse . 

Example 7: (i) Take (R, + ,0 to be a regular ring in which 

(R,0 is not orthodox. Set S = Rulal where a <j* R and define 

r + a = a + r = r, a + a - a = r*a = a»r for all rgR. Then 

(S,+,*) is a semiring in which ( S , » ) is regular and a is the ad­

ditive and multiplicative £p-o of S. Hence (Sf + f O satisfies con­

dition (v) of Result 6, but is not orthodox. 

(ii) Let (Sf+) be a semilattice with |Sl£2 and define 

A*j = x for all x fyeS. Then (S, + f«) is an additively inverse se­

miring in which the multiplicative semigroup is orthodox but not 

inverse. 

Laliement (181 Theorem 4.6) has proved that a primitive re­

gular ring-semigroup is a group with zero adjoined. In particu­

lar, a corapletely-O-simple ring-semigroup is a group with zero 

adjoined. 
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Define a partial order on the set of idempotents E of a 

semigroup S by; f£e if and only if f - e-f-e. A nonzero idea-

potent e is primitive in S if for f €E, 0-M £e implies f « e. 

The semigroup S satisfies Min - E if the minimum condition holds 

for E under the specified order; Max - E is defined dually. If 

x e S let 

J(x) « - I X J U X S U S X U S X S 

denote the principal (two-sided) ideal generated by x, and 

K x ) - 4yeJ(x);J(y) £ j(x)| 

the set of nongenerators of J(x). Then S is called completely 

semi simple if for each nonzero xgS, the Rees quotient semi­

group J(x)/I(x) contains a primitive idempotent, in which oase 

every nonzero idempotent of J(x)/I(x) is primitive. We let 

Min - J signify the minimum condition on the set of principal 

ideals of S; Max - J is its dual. 

A ring is aemiprime if it contains no nonzero nilpotent 

(one-sided) ideals, and artinjan if it satisfies the minimum 

condition on right ideals, A ring is atomic if it is a (direct) 

sum of minimal right ideals* 

As a generalization of Lallement's theorem we have the fol­

lowing result. 

Result 8; (151 Theorem 4.) 

For a semigroup S, the following conditions are equivalents 

(i) S is completely semisimple and satisfies Min - J. 

(ii) S is completely semisimple and satisfies Min - E# 

(iii) S is regular and satisfies Min - E. 

Furthermore, if S is a ring-semigroup, then (i),(ii) and 

(iii) are equivalent to each of the following conditions; 
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(iv) (Sf+»*) is a semi prime atomic ring. 

(T) (Sf+,0 is a direct sua of dense rings of finite-rank 

linear transformations of vector spaces over division rings. 

Example 9i Whilst the equivalent conditions (i)t(ii),(iii) 

of Result 8 imply that S is regular with Min - J, the converse 

does not hold, even for rings with identity. To see this, consi­

der the full ring of linear transformations of an infinite-di­

mensional vector space. This ring is regular (t93» Theorem 7*3) 

with Min - J (POl, Theorem 1.4.2) hut does not satisfy Min - E, 

since the projections onto an infinite descending chain of sub-

spaces give rise to an infinite descending chain of idempotents. 

Result 10I ([5] Theorem 5.) 

For a semigroup Sf each of the following conditions implies 

the next.. 

(i) S is completely semisimple and satisfies Max - J. 

(ii) S is completely semisimple and satisfies Max - E. 

(ill) S is regular and satisfies Max - E. 

Furthermore. if S is a ring-semigroup, then conditions (i)f 

(ii) and (iii) are equivalent to each other and to the condition; 

(iv) (Sf+f*) is a aemlprime artinian ring i.e. a finite 

direct sum of full matrix rings over divi sion rings. 

Example 11; (i) The bicyclic semigroup /3(p*a_) * 

» <pfq:pq « I4~qp> is regular and satisfies Max - E hut not 

Min - E ([13 Theorem 2.53)» Moreover it is not completely semi-

simple. Thus in Theorem 10, condition (iii) does not imply condi­

tion (ii) for non~ring-semigroups-

(ii) Let C he the chain of length n, n*2. Suppose these 

chains have a common zero element 0. Take E to be the 0-direct 

union of C , n£ 2. Then E is a semi lattice satisfying Max - E and 
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Min - E. The Munn semigroupf Tg of E (£6.3 Section V.4) is an in-

Terse semigroup with B as its semilattiee of idempotenta (and 

thus is completely aemisimple by Thtortm 8) hut does not satis­

fy Max - J. 

Thus in Theorem 10, (ii) =-> (i) is not valid for non-ring-

semigroups. 

(iii) [2] Examples (a)9(h) page 803 give examples of regu­

lar ring-semigroups which: 

(a) have only two principal ideals but do not satisfy 

Max - E or Min - E, 

(b) are eompletely semisimple but do not satisfy Max - J, 

Min - J, Max - E or Min - E. 

3. Congruences on regular semirings! Semirings in which 

the additive semigroup is inverse and the multiplicative semi­

group Is regular (and henoe the additive semigroup is a semilat­

tiee of abelian groups) are oonsldered in C113,C131. These pa­

pers also consider the oaee in which the multiplicative semi­

group is simple or 0-simplt. 

Result 12i (Ml) 

In a semiring (Sf+fO the additive Green s relations 

e£9Tl9X,Zb 9T are congruences on the multiplicative semigroup 

(S fO. 

• semigroup (Sf») is said to be congruence-free if the on­

ly congruence relations on S are i* and SxS. Thus a congru­

ence-fret semigroup is simple or 0-simplt, since if I is an 1-

deal of Sf J>j defined by J-»x • (Ixl) o lSi is a congruence 

relation on S. 

A band (S,*) is left (right) regular if axa « ax (axa -

« xa) for all a,xeS. 
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Lemma 13i Take (St») to be a regular semigroup on whioh 

£ ( & ) is trivial. Then S is a right (left) regular band i.e. 

a semilattice of left [right! sero semigroups. 

Proofi Take x taeS and a*£V(a). Then a^ta'a and thus 

a • a "a. Hence a * a(a'a) » a. How S axafiS xa - S xaxa e 

9 S axa and so S axa • S za i.e. axa«£xa * Thus axa » xa for 

all a txcS. Q 

Corollary 14t Take (St») to be a regular semigroup on whioh 

2) is trivial. Then (St*) is a semilattice. 

Proofi Since «C» & » 4 g t S is both a left and right re­

gular band and henoe a semilattice. Q 

A semiring (St+t») is said to be completely simple if the 

additive semigroup is completely simple and the multiplicative 

semigroup le either completely simple or completely 0-simple. 

Theorem 15! ([13) Theorem 24)• Take (St+t») to be a comple­

tely simple semiring. 

(i) If the multiplicative semigroup is completely 0-simp­

le, then the semiring is a division ring. 

(ii) If the multiplicative semigroup is completely simple. 

then the additive semigroup is a rectangular band and the mul­

tiplicative semigroup is a product of two completely simple se­

migroups S » I x A and the operations on the semiring S are 

given by 

(i,a) + (d,<u,) - (i,(U,) 

(i tAMj t<u,) » (i«jtA.<u.) 

for all i..1 €l. A f f-tcA. 

Theorem 16! Take (St+t») to be a semiring in whioh the ad­

ditive semigroup is regular and the multiplicative semigroup is 
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congruence-free. Then the additive semigroup is either a group. 

a aemilattice. a left zero band or a right zero band. 

Proofs By [3] Lema 2 (i), the set B W is an ideal of 

(S,*). Since (S,») is simple or O-simple, E^+3 » 10 J or S W « 

« S. Since (3,+) is a regular semigroup, it is either a group 

or a band* 

Because T is a congruence on the multiplicative semigroup 

(S,0» T - lg or Tm SxS. 

(i) In the case .T« 4 g, then (S,+) is a semilattlce by 

Corollary 14, since 2) £ (H. 

(ii) When (T-* SxS, (S,+) is a simple semigroup. 

(a) 3C- tf« Jt»2> -* 1s. 

Then (S,+) is a simple semilattice and thus the trivial group. 

(b) % »S£ » l g f fl.S - SxS. 

Then (S,+) is right simple and a band. Thus, by LU Theorem 

1.27, S is the direct product of a group and a right zero band 

and thus is a right zero band since *K -» Ig. 

(C) %m%m 1 g t SC«(B « SxS. 

By symmetry, (S,+) is a left zero semigroup. 

(d) X M SxS. 

In this case (S,+) is a group. D 

Example 17: We provide examples of semirings in which the 

additive semigroup is regular and the multiplicative semigroup 

Is congruence-free, as in Theorem 16. 

(i) Take (S,+,») to be the two element field. Then (S,0 

Is congruence-free. Here (S,+) is a group. 

(ii) The two-element chain has as its multiplicative se­

migroup a congruence-free semigroup. Here (S,+) is a semilatti­

ce. 
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( i i i ) Take (S,») to be any congruence-free semigroup. 

Define the binary operation + s S x S - » S by x + y «• x for a l l 

x t y € S . Then (S t + t O i s a semiring in which the additiTe se ­

migroup i s a le f t -zero band. 

Theorem 18: Take (S t+ t») to be a semiring in which (S t+) 

i s a regular semigroup and ( S , 0 has a unique non-tr iv ia l con­

gruence. Then the additive semigroup i e either a group, a »*-

milatt ice of groups, a semilatt ice of l e f t zero bands, a semi-

l a t t i c e of ri^ht zero bmnds. a l e f t group or a right group. 

Proof? Denote by p the non-tr iv ia l congruence on (S t *) . 

Since 1C s £ £ © & 1 and X<*%G®&'ftm% have that e i t ­

her l f s . f t o r 3 f c s S 6 . W e shal l only consider the cases in 

which £ £ & , since the resul t s for % SkX w i l l follow by 

symmetry. 

(D se - . » - a - 1 S . 
By Corollary H t (St+) is a semilattice. 

(ii) %»j£.&«ffl-.<r. 

Clearly, a regular semigroup in which «6 » % is a semilatti­

ce of groups. 

(iii) *X • & • % •% -pC-T.SxS. 

In this case, (St+) is a semilattice of groups and also sim­

ple since Cf» SxS, Hence (St+) Is a group. 

We now consider the case in which o£ c 4t * 

(iv) 13 •%• £ £ fi, • ® Q<T & S*S. 

Since X is trivial, by Lemma 13, S la a right regular 

band, i.e. a semilattice of right zero semigroups. 

The other cases were considered in Theorem 16 or follow 

by symmetry. 
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