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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

25.1 (1984) 

POINTLESS UNIFORMITIES il. (DIA)METRIZATION 
A. PULTR 

Abstract; Metrization theorems for pointless uniformities 
and weak un£7ormities are proved. 

Key words; Uniformity on a locale, diameters, metrization. 

Classification; 54B15, 54E35, 06D10 

This paper is a lose continuation of the paper [61. There 

we have proved the equivalence of complete regularity and uni-

formizability in locales and indicated a role of diameters, k 

system 9) of diameters gives rise to a uniformity (orf to a 

weak uniformity, according to how strong conditions are impos­

ed on the diameters) %(£D)« We have seen, in particular, that 

if a locale is uniformizable at all, it is uniformizable by a 

% (3)). The main aim of this paper is to prove metrization 

theorems for pointless uniformities, i.e. to show that, in fact, 

each uniformity on a locale is a *lL(3})9 and that it is induc­

ed by a single diameter function whenever it has a countable 

basis. This goal is achieved by modifying the standard metri­

zation argument (see, e.g., [5]) and, perhaps, yields also a 

better insight into what is going on there. 

The first, and larger, part of the article (Sections 1-3) 

is devoted to a discussion of various conditions one can impo­

se on diameter functions. Section 1 contains the basic defi-
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nitions and relations between the conditions. In Section 2 it 

is shown that in the spatial case, the metrie diameters are In 

a natural one-one correspondence with the pseudometries. Secti­

on 3 deals with constructions allowing to obtain stronger pro­

perties of diameters. In the last, fourth, section the indueea 

uniformities are discussed and metrication theorems are proved. 

The terminology follows the standard usage (as, e.g., in 

t4]#D])» 1» special definitions the notation and convention 

of [6} are preserved (with the exception of the condition (M) 

which now contains automatically the condition (A)). 

1.- Diameters 

1.1 . l e say that a subset of a locale L i s connected i f 

V a , b t S 3 a . j , . . . , a € S such that â  « a, a » b and 

a i A a i + 1 * ° f o r i • 1 »• • •» n ~ 1 • 

We say that i t i s strongly connected i f 

a f be S «$> aAb .fO. 

The system of all connected subsets of L will be denoted by 

conn(L), 

that of the strongly connected ones by 

Jf(D. 

1.2. A pre-diameter on a locale L i s m function 

d: L —> Ifc + 

( R + i s the set of the non-negative reals) such thai 

( i ) d(0) -- 0, 

( i i ) a * b « ^ d ( a ) £ d ( b ) , 

(iii) V e > 0 , *ald(a)< ef is a cover of L. 

It is said to be continuous if, moreover, 

(C) for eaoh monotou- r m linearly ordered by ̂  ) ScL, 
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d ( \ / S ) m sup td(a) )a€S$. 

1,3. A pre-diameter d i s said to he 

* a we#3c diameter if 

W t f©r af h suoh that aAh#O f 

i U v b ) 6 2 max (d(a) fd(h))i 

*- *-* additive diameter if 

(*)t for afh suoh that aAb^O, 

d(avh)ittd(a)+d(h)i 

- a atar diameter if 

C*)t f o r S c t f ( L ) 

d ( V 3 k 2 sup | d ( a ) | a € S l i 

- a atar-ad^itlve diameter if 

(*A)$ for 3 €ff(L)f 

d( V 3 ) ^ sup {d(a)4.d(h)lafh€Sf a # h l ; 

- a silmm, ftM*l« ^ 
(S)J for Scconn (L)f 

d( \/S)& s u p f i n f l ^ d(a t) la j LcS f • ,»§ , a^-b, a ^ t i + 1 4* 

tO} la f bCS, a + hU 

- a metric, diameter if 

(M)t (A) and 

Vx%L V e ^ O 3 u,v f UAX + 0 4iTAX&d(u)fd(f)< e Be d(uy v)> 

> d(x) - f# . 

1*4. jUnjgflc: The following implications are obvious 

S _» (#A) -=*> ( * ) 

I I 
(A) =0-=^ (W) . 

In [6| Lemma 5.1] we have seen that (M)-*&-> (#:). In fact, as 

we will shortly eee, (M) is the strongest of all the mention­

ed requirements (and, moreover, implies continuity)* In the 
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next section we will show that the metric diameters correspond 

in the spatial esse exactly to the pseudometries. Thus, they 

can be understood as a natural modification of the notion of 

distance for the purposes of general locales. 

The reason why we list the other mentioned conditions on 

pre-diameters (and no further ones used elsewhere, e.g. in [ 2}) 

isf of course, giTen by the aims of the article. The condition 

(W) is the weakest one one needs to Induce at least weak unifor­

mities; (A) is very natural and, basides, It is a part of (M); 

(#A) is also Tery natural, probably the most intuitiTe of all, 

and it will play a technical role: a star-additiTe diameter can 

be Tery satisfactorily approximated by a metric one: (S) is an 

extension of (*A) and will appear as a consequence of (M). The 

condition (* ) is about the minimum one needs for generating 

uniformities; besides, star-diameters will also play a techni­

cal role. 

1»5# Theorem: ^ metric diameter is a continuous strong 

diameter. 

Proof: (C): Let Sc L be monotone. Take an t >* 0 and 

choose u, T such that d(u)fd(T) < e , U A V S 4 » 0 4 - T A V S and 

d(uvT)>d( V S ) - e .We haTe xfy$ S such that XAu4-04-yAT. 

Iff say, yzx f we haTe also U A y ^ O . Thus, 

d(uvv)i4d(y V U V T ) .&d(yvu) + % -£d(y) + 2 6, 

so that 

d(y)>d( V S ) - 3e • 

Hence, sup -td(y) ly e S\ 2Td( V S). On the other hand, obviously 

sup d(y)6d( V S ) . 

(S): Let this not hold. Then, we haTe an Sc conn (L) and 

an T\ > 0 such t*-**" 
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d(VS)> s u p { i n f ^ 2 ^ d ( a 1 ) \ a 1 € S f a.j « af aQ » b t 

a j L A a l + 1 ^ 0 5 | a f b c S f a^b? + ^ * 

fake an e > 0 such that €-£ «g ̂  a n d choose u, v such that 

d(u) fd(T) < h f U A V S # 0 + T A V S and d ( u v T ) > d ( \ / S ) - €** 

Consider a f b c 3 with uAa4.O4.vAb. 

I . Let a^sb. fhen we have, in particular, 

d( V S ) > i n f K^t 1 d ( a ± ) l a 1 e S t a.! « a t an « b f 

a i A a i + 1 * ° * + ^ 
and hence there are a.| • a , a 2 , # # . , a n » b f ^ A a ^ ^ o such that 

(1) d( V S ) > Z d ( a 1 ) + | ^ • 

By 1.2(iii) we can choose u ^ L such that 

d(u1) <• & and u ^ aAA al+1. 

We obtain 

d(uvu1)-&d(ttva1).£ d(a.j) + % % 

d(^ v u 2 ) t 6 d ( a 2 ) , 

d(un-.2vttn-1)i6d(an-1)' 
d K - 1 V T ^ d K v v ^ d ' a n ' + &• 

Using repeatedly (A) we obtain 

d (uvu . Y . . . vu^^-j v v ) - ^ d ( u v u 1 ) + d ( u 1 v u 2 ) + . . • + 

+ d(u n - 1 V T ) i Z d(a1) + 2 fc 

00 that 

d ( V S ) < d ( u y T ) + e * I d f a j ) + 3e» «* -£ d(a t ) + | ^ 

in contradiction with ( 1 ) . 

I I . Let a • b. Choose an arbitrary c e S , c £ a (obviously 

S has to have at l eas t two elements). We have 
/»v 

d( V S ) > i n f -C . 2 ^ d(a 1 ) la 1 • a, a n - c f a±A a i + 1 * O j + \ 
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eo that, again, there are a.- - a, a 2 > . . . f a * o 0uoh that 

d ( \ / S ) > Z d ( a i ) + | ^ . 

l e obtain a contradiction 

d( V S ) ^ d ( u V T ) + e * d ( u v a VY) + & «* d(a) + 3 t t * 

<* 2 d(a t) + 3€, < l E d ^ ) + ^ < d ( V S ) . D 

2. Spatial cage: metric diameters and pseudometrioe 

2 . 1 . In th i s sect ion, a topological apace X - (XfL) ia 

given, L i e the locale of i t s open se t s . To keep the notatien 

in accord with that of the general oase f we w i l l denete the open 

sets in X by lower oase Roman l e t t e r s . The points of X wi l l he 

denoted by oC f ft , f and ct. I f (p ia a pseudLometrio on X we 

write 

XI (oCi .e) - ^ j3 \ § D ( O C , ft) < e i • 

2 .2 . Let fD be a bounded pseudometrio on the set X. l e 

oonstruct 

d i L - > m + 

by putting 

(2) d(x) - sup i<p(o4 , ft) 1 oC, ft 6 x j . 

2 . 3 . Proposition; Let the topology of (Xfj> ) be weaker 

than that of X. Then d defined by (2) i s a metric diameter. 

Proof i s a matter of easy checking. Since the s e t s 

.&»(*,*.) are open, we can take for u f • in (M) suitable 

i K o ^ l ^ ' -&(f**?fc)# a 

2 .4 . Let diL —> 1R + be a metric diameter, define 

(* ;X*X-~->1R + 

by putting 

(3) <p(cc9fi) « inf 4d(x) I -too, ft\c x i . 
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2 .5 . Proposition! The function (& i s a pseudometric on 

the set X. 

Proofi The triangle inequality follows eas i ly from (A)f 

<p(at f cc ) - 0 from 1 . 2 ( i i i ) . Obviously, co (oc f /3 ) » £>(/3 »oC ) . Q 

^•6. Lemma; Let ro be constructed from d by (3 ) . Then 

I L ^ O C , ; e ) • V - t x \ x 6 L f a C 6 i , d(x) <c &l . 

Consequently, the topology of (Xf rf>) i s weaker than L. 

Proof: We have 

o (oc , (S ) < e i f f 3 x 3-tec, |3i , x € L f such that d (x )< 6 . D 

2*7* Theorem; The formulae (2) and (3) const i tute a one-

one correspondence between the set of a l l bounded me t r io diame­

ters d on L and the se t of a l l bounded pseudometrics tf> on X 

suoh that the topology of ( X f p ) i s weaker than L. 

Proof: I . Start with a diameter df construct* by (3) and 

a new diameter d* from (D by ( 2 ) . Obviously, 

d* ( x ) f d ( x ) . 

Let there be an x and an %, >* 0 such that d(x) > d ' ( x ) + 3 s . 

Take u f v suoh that U A X + O - ^ V A X , d ( u ) f d ( v ) < 6 and d (uvv ) > 

>d (x ) - 6 (and, hence, d ( u v v ) > d # ( x ) + 2 e> ) . Choose c c e u / \ x f 

P « T A X , Consider an arbitrary w«L suoh that i<c# Q>\ c w. We havw 

d ( u v v ) ^ d ( w v u v v ) ^ d ( w ) + 2 & 

and hence 

d ( w ) * d ( u v v ) - 2 « , > d'(x) 

so that 

p(oC , (i)z d(uv v) - 2 e .> d*(x) 

in contradiction with the def ini t ion of d # (x ) . 

I I . Start with a pseudometric rt> f construct d by (2) and 

then a new pseudometric no by (3 ) . We obviously have 

f>'(oc, jl) Z p ( tx , (i ) • 
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*•* f'tot *(*)>* p(oC f (h) + 3 e . Consider u • Sl(oo^ s, ) f 

v « H ( # * y e ) . Thus, d(u) fd(v)<c e . Take T * u f oTc v. We 

have 

cJ>(XtOr) *<p(ir,cc) +p(oC f /5 ) +^>(/5tcT)< p ( o C f ^ ) + 2 6 , 

and i f Qf f <̂  « u or ^pf cf « v obviously ro(yfcT)<2e. Thus 

d ( u v v ) ^ p ( o c f / 3 ) + 2 & < <p'(oc, /3) - e 

l a contradiction with the def in i t ion of « / • O 

2 .8 . Proposition: d o t a t i o n from £6}.) Let d he a metric 

diameter on L, l e t JD he obtained by (3)* Then 

u i s open i n ( X f p ) i f f u e L ^ 

where U la the u-basis U a , d ( a ) < e 1 I 6 > o i . 

Preofi Let u be open in (X,(D). By 2 .6 , u e L . Let oo be 

an arbitrary point of u. Take an & > 0 such that Sl(<c%2B )c u. 

Put v m H (oc; e ) and consider A * -Cald(a) < fc $ . We have 

Av.£u and hence v «<3 u# 

Since oc was arbitrary, u * V - t x l x <3 ux. 

On the other hand, l e t u • V-t x lx -<x u . Take en oC6 u. 
11 There i s an x, x <3 u such that oC € x and there has to be an 

& >> 0 such that, for A **<{a|d(a)< & i , Ax^u. Obviously, 

.Q(ocf6)£Ax. a 

3. Fabricating diameters with stronger properties 

3.1» For a star diameter d on a locale L put 

cT(x) « inf sup-id(u V V ) | U A X 4 - 0 - * V A X , d(u) ,d(v) < fc J * 
fc>0 

3»2» Lemma? For any x , y s L we have 

f / ( x v y ) 2 : d ( x v y ) - d(x) - d(y) . 

Proof: If x * 0 or y » 0 f the right hand side i s zero. 

Thus, we can assume that x-KO#y. 
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Let d * ( x y y ) < d ( x v y ) - d(x) - d(y) . Then we have an £ 0 > O 

suoh tha t f fo r e <- €-0 f 

cc m a u p - C d ( u v T ) l u A ( x v y ) ^ - O ^ T A ( x v y ) , d(tt) fd(T)-C s i ^ 

- « d ( x v y ) - d(x) - d ( y ) . 

Choose u f v such tha t UAX#0 4-TAy and d(u) fd(T) -< e . We hare 

d ( x v y ) - 6 d ( x v y v u V T ) £ 4 ( U VV) + d(x) + d(y) 

and we obta in a con t rad ic t ion 

oc 2: d ( u v v ) 2 d ( x v y ) - d(x) - d(y) > oO • O 

3*3* Lemma: We have 

^ d ( x ) ^ c T ( x ) ^ d ( x ) . 

Proof: I f u A X - f O * T A i and d(u) f d(v) * & $ we have 

d ( u v 7 ) 6 d ( x y u Y T ) i d(x) + 2 e • 

Hence, cT(x) -& d(x) • 

Now, l e t us have, fo r some x c L and TJ, >- 0 f 

</"(x)<£d(x) - ^ . 

Thus, we have an e >* 0 suoh tha t 

sup $ d ( u V V ) 1 U A X # 0 4 - V A X , d(u) ,d(v) -<£}-<: »r(d(x) - ^ ) . 

Take the system S « K u e Lld(u) -c €, f U A X 4 ? 0 1 and choose a f ixed 

v € S. Thus, X s 4 \ / ( u v v 0 l u f i S l and we obta in , by ( # ) f 

d ( x ) ^ 2 sup U ( u v 7 0 ) l u 6 S 5 < d ( x ) - ^ 

which i s a contradict ion* O 

3.4* Theorem; For any s t a r - a d d i t i v e diameter d there i s 

a metric diameter </ such tha t 

!>d £ cT <£ d. 

Proof: According to 3.3 i t suf f ices to prove t ha t the cT 

from 3.1 i s a metric diameter. Obviously, i t i s a prediameter 

(1.2(11) i s s t ra ightfo rward and 1.2(1) and ( i i i ) follow from 

3 .3 ) . 
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(A)j Let i t not hold. Hence, we have some a , b s L f aAb#-0, 

and an rj > 0 such that 

c T U v b ) > c r ( a ) + cT(b) + ri . 

Thus, for a suf f ic ient ly small e > 0, 

d*(avb)>sup -Cd(u-|VT1)lu1A a-t-O.J.T.j A a, d(u.j) fd(T.j) < 6 I + 

+ sup-fd(u 2 VT 2 ) |u 2 Ab4 K 0 .#T 2 Ab f d(u2) fd(T2)-c e { + ^ . 

Choose u f T f u A ( a v h ) 4 , 0 4»VA(avb) f d(u) f d(T)-<e such that 

/ ( a v b ) < d ( u v T ) - ^+i 

so that 

d(uVT)>sup -\d(u.j v T.|)l . . . \ + sup -C dd^v T 2 ) ! • • . } . 

Thus, neither UAa.*0-fcVAa nor uAb + O+VAb and we can assume 

uAft+O-fTAb, Choose a weL such that d(w)-< e and WA(aAb)4» 

4»0. We obtain a contradiction 

d ( u v T ) > d ( u v w ) + d(w vv)2rd(uvTV w). 

The metric property: By 3.2 we obtain 

(4) J X x ^ i n f f l s u p < o f ( u v T ) + 2 e l U A X + 0 4 - T A X , d(u)fd(T)-*r 

< e? . 

Let <5 be not metric Then we haTe an e^>0 such that for all 
o 

u f T such that d*(vi) f CT(T) -C e and U A X ^ 0 4 - V A X necessari ly 

( 5 ) C T ( U Y T ) * < « X > - e 0 . 

Choose an e < *r e Q . By (4) and 3.3 we have 

(fix) .6 sup * oT(u v •) + 2 e \ • • •, cT (u) , <? (v) -c e * 

and hence, using ( 5 ) f we obtain a contradiction 

cT(x).&cT(x) - e Q + 2 e -< c f ( x ) . D 

3.5. Let f be a pre-diameter. For Seconn (L) and a f b s S 

put (U, f(a fb,S) « inf I /E^ f ( a j [ ) l a 1 * a , a n = b,a iA a ± + 1 * 0, 
a^в Sř. 

Further, put 

(* f (S) » sup { r a f ( a , b , S ) l a , b € S $ . 
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3«6. Observations 1. Let b-jAbg + O. Then 

<u,(afcfS) * (uc(a fb1fS) + <u,(b 2 fc,S) . 

2 . Let S-jC Sg. Then 

("'(fctb.S.,) 2r f ^ ( a f h f S 2 ) . 

3 .7 . -?or x cL put 

d f(x) - inf-C(U,f(S)ISsconn (L) f x i V s { , 

Obviously, 

d f-£f. 

^•8« Theoremt The funct ion df i s a s t a r - a d d i t i v e diameter. 

Proofs Obviously, df i s a pre-diameter . Let i t no t be star-

a d d i t i v e . Thus, we have an S e %f(L) and an e > 0 suoh tha t 

(6) d f ( VS)>8up-Cd(a ) + d ( b ) l a f b * S f a4-b}+ 3f> • 

IFor each a&S choose an S €. conn (L) such tha t 

V S a z a and (Uif (S& )< df (a) + €> . 

Thus, by (6 ) f we have 

for any a f b « S f a * b f 

d( V S) > (W.(Sa) + (U,(Sb) + fc . 

Put T « U- tSg^asS* . Obviously, T&oonn (L) and V S > V S BO 

tha t .-ti,(T)*d( V S ) and hence, by ( 7 ) , 

^ ( T ) > (a(S a) + (u(Sb) + & • 

Thus, there e x i s t u f v e T such tha t 

(8) (tt(u fv fT) y tU*(Sa) + (Lc(Sb). 

We cannot have u f v e S for an a r s ince then we would have (see 

3.6.2) (U,(ufvfT) * (U^(u,vfSa) .& f^(S&). Thus, there a r e a f b , 

a4=.b, u « S a and v c S b . Chooae an xC S& and a y c S b such t h a t 

XAy-fO* Now, (8) and 3.6 y i e l d a con t r ad ic t ion 

( x*(u f v,T)^ ,u,(u,x,S a) + (W.(y,v,Sb) 2. ^ ( u f x f T ) + 

+ (U(y fv,T)2r (U,(u fv,T). O 

3 .9 . We w i l l formulate one more condi t ion concerning p r e -

diameters f; 
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(3W)i for a f b f e such that aA b4»0*DA e f 

f ( a v b v o ) « £ 2 max ( f (a) f f (b) , * ( * ) ) • 

Lemmat Let f sa t i s fy (3W). Let a c ^ . . . , ^ be such that 
x i A X i + l 4 s 0 for i m 1 , . . . t n - 1 . Then 

f ( t V i x i > 6 2 * f i f(xi>-
Proof by induction on n. For n » 1» f(x^)^ 2f(xi). Let the 

/»*1 
inequality hold for nf consider x-j f... t^+f ^ ^ ^"•i?-! f^xi' 

and take the first k such that .2^ t(x*)Zn*C . Then 

i f , * < * . > * * • 4 , ^ f ( x i > * - ' 
and hencef by the induction hypothesis, 

-"< &.-!>*«* » f ( ^ -!>-**• 

Since also f(x, ) ^ oC we obtain, using (3W) f 

/n+1 .7*4-4 

«*V. «!>*-* - 2 *£<«-!>• ° 
3 . 1 0 . Lemmas Let f be a star diameter sat isfying (3W), l e t 

^ f be the function from 3 .5 . Then for any Sc conn (L) 

f ( V S ) ^ (Ctf(S). 

Proof? Pix a u c S and an s r 0. Por each u£ S choose a 

sequence x.j (u) f . . . f x n (u)€ S such that u « x̂  (u ) , u = xn(u) f 

x^(u) A Xj+ 1 (u)4-0 and 

S f ( x i ( u ) ) -< ^c f(uo fu,S) + v • 

Put s(u) « V x i ( u ) . Evidently, s(u) A s(v) > u 4*0 and u ^ s ( u ) 

so that 

(9) V-Cs(u) lu6S^ « V S and i s ( u ) l u 4 S j c t f ( L ) . 

By 3»9 we have 

f ( s ( u ) ) ^ 2 S f ( x ± ( u ) ) ^ 2 <u. f(uofu,S) + 2 $ S 6 2 (U.f(S) + 2 & 

and hence, by ( * ) and (9 ) f 

f( V S ) ^ 2 sup 4 f ( s ( u ) ) l u 6 S i ^ 4 c
u > ( S ) + 46 . O 

- 116 -



3*11* Theorems For each star diameter f satisfying (3W) 

there is a metric diameter d such that 

g f ( x ) . £ d ( x ) - 6 f ( x ) . 

Proofs Consider first the function df from 3.7. Let S he 

in conn (L)f x 4 V S . By 3.10 

f(x)£f( V S ) ^ 4 (U.f(S) 

and hence df(x) » inf *<*f(S) I V S ^ x U ^*(x). 

By 3.8, df is star additive so that our statement now follows 

from 3.4. D 

4. (Dia)metrization of uniformities 

4.1. A u-basis (resp. wu-basis) A such that % » % (see 

16; 3.3t 3.5]) will be referred to as a basis of the uniformity 

(resp. weak uniformity) % . 

It is said to be meet-closed if 

AfB € A *=p 3 C € J t , C-( AAB. 

Obviously, i f A i s meet-closed then 

A e % i f f 3 B e A 9 B A A. 

4 . 2 . For a u-basis (wu-basis) A put 

mA » 4.A.J A • • • AA^IAJ c A j • 

By C6% 3.41 we see that rail i s a u-basis (wu-basis) again. 

Obviously i t i s meet-closed. Thus, we make an 

Observations If *U has a countable b a s i s , i t has a count­

able meet-closed bas is . Q 

4*3. Lemmas Let a uniformity (resp. a weak uniformity) Qi 

have a countable basis* Then i t has a meet closed basis A » 

m ik0tA.j f . . . f A n f . . . ! such that AQ * { e i and, for each nf 

Proofs Take a meet-closed basis $b * £ B 1 f B 2 f . . . f B f . . . } 
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of % . Put A0 - i%\% A1 . B r Let A ^ . . . , ^ be already defined 

so t ha t 

<* > Kll^S: (re»P- 4+1 {2)< V f ° r k < n ' 
( /3) A^e^k for k £ n f 

( 7 ) A ^ ^ B^ for k * n . 

There i s a B r such tha t B j*-< A^ r e sp . B £ 2 ^ 2 ' - < k^ and a 

Bs^ B rAVv * * V l s V D 

*•*• Proposition: For each uniformity (resp. weak uniformi­

ty) U there is a system (l^li^J) of uniformities (resp. weak 

uniformities) with countable bases such that 

A 6 It iff .3 i A € l£ r 

Proof: For an A e ll. choose inductively A-j tA2»... fA . f t > . . . 

so that A - A1f A*+1 A An (resp. A%~\ -< A n ) . Put J « U 9 Ak -

- U ^ i - 1f2,...]f 0tA » # A . Q 

4.5. For a weak diameter d put 

U(d) » AA I 3 t>0 f *a\d(a) «c 6 W A*. 

More generallyf let S> be a system of weak diameters. Put 

1t(3)) m % where JU -Uald(a) < e J 1 d € SD f e P* Ol 

(using A has been necessary to ensure the meet property; in the 

case of one d this is automatic). 

Obviousl.y f 14(d), I t O ) are weak uniformities. If d resp. 

all the members of % are star diameters, 14(d) resp. 24(3 ) ie 

a uniformity. 

4*6* Theorem: 11 is a uniformity with a countable basis Iff 

there is a metric diameter suoh that 14- 24(d). 

(Note that this fact provides the formal definition of metrila­

bility in [33 with a more concrete contents.) 

Proof: Consider the basis AofA.j f... , . 4 ^ , . . . from 4.3 and 

define f:L —* H + by putting 
f(x) - inf -i2-

nlx£a for some a c . y . 
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Obviously, f i s a pre-diameter. How, l e t S be as i n if(l>) and 

l e t &(&)&2~*n ' for a l l a € S . Thus, we haTe for each a c S a 

b (a )eA B + 1 such that b(a)2ra. Hence, V S * V4b(a) |ae» S i c A £ + 1 C 
c *n*1 ~* *n 8 0 *h a* V S ^ b for some beA^. Thus, 

f (a )^2"" ( n + 1 ) for a l l a c S implies f ( V 3 ) . ^ 2 " B 

and henoe f ( V S ) » 2 sup «Cf(a)|a«S$ so that f i s a star diame­

ter . 

How, l e t x t y t i be such that X A y * 0 * y A Z . I f f ( x ) t f ( y ) , 

t(z)£2~*'n* ' , we haTe a,b,e-€ A ^ such that x ^ a t y .£b t z £ c 

Hence, a v b € A^.] and av b y e €A^|*}^2) c A*^ -< .An§ hence 

f ( x v y v « ) ^ 2 " a and we conclude that also (3W) i s s a t i s f i e d . 

Thus, by 3.11 there i s a metric diameter d suoh that 

3 f «£d*f. 

We check easily that 4L« U(f) and that %(t) « 16(d). 

On the other hand, obTiously every 11(d) has the countab­

le basis ttald(a)< i H n « 1f2t...*. O 

*•?• Theoremi For eTery uniformity 11 there is a set of 

metric diameters 2) such that 11 • 11(3)). 

Proo.fi follows easily from 4.4 and 4.6. O 

4*&* Remarki The constructions of Section 3 haTe served 

the purpose of crossing the gap between the star diameters and 

the metric ones (of course, this has to be done if we wish to 

haTe a generalization of the well-known metrization theorems -

see Section 2). To proTe just that 

U is a uniformity with a countable basis iff there is a 

star diameter d such that tl « 21(d) 

(and a similar weaker analogon of 4.7) one needs the first half 

of the proof of 4.6 only, without any reference to Section 3. 

Similarly, one Immediately obtains that 
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11 is a weak uniformity with a countable basis iff there 

is a weak diameter d such that 01 - U(d), 

and that 

For every weak uniformity It there is a set of weak dia­

meters 3 such that U - U (3 ). 

There seems to be a problem of some interest as to whether the 

weak diameters in these statements can be replaced by additive 

ones. 
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