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POINTLESS UNIFORMITIES il. (DIA)METRIZATION
A. PULTR

Abstract: Metrization theorems for pointless uniformities
and weak uniformities are proved.

Key words: Uniformity on a locale, diameters, metrization.
Classification: 54E15, 54E35, 06D10

This paper is a lose continuation of the paper [61. There
we have proved the equivalence of complete regularity and uni-
formizebility in locales and indicated a role of diameters. A
system &) of diameters gives rise to a uniformity (or, to a
weak uniformity, according to how strong conditions are impos-
ed on the diameters) U(D ). We have seen, in particular, that
if a locale is uniformizable at all, it is uniformizable by a
U(D). The mein aim of this paper is to prove metrization
theorems for pointless uniformities, i.e. to show that, in fact,
each uniformity on a locale is a U(PD), and thet it is induc-
ed by a single diameter function whenever it has a countable
basis. This goal 1s achieved by modifying the standard metri-
zation argument (see, e.g., [5]) and, perhaps, yields also a
better insight into what is going on there.

The first, and larger, part of the article (Sections 1-3)
is devoted to a discussion of various conditions one can impo-

se on diemeter functions. Sectica 1 contains the basic defi-
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nitions and relations between the conditions. In Section 2 it
is shown that in the spatial case, the metris diameters are in
a natural one-one correspondence with the pseudometrics. Secti-
on 3 deals with eonstructions allowing to obtain stronger pro-
perties of diameters. In the last, fourth, section the indused
uniformities are discussed and metrization theorems are proved.

The terminology follows the standard usage (as, e.g., in
[4),[11), im special definitions the notetion and convention
of [6] are preserved (with the exception of the condition (M)
which now contains automatically the condition (4)).

1.- Diameters

1.1. We may that a subset of a locale L is connected if

Va,bes 3 8ys0.0,2,€ S such that a; = &, a = b and
84A8; 1%0 for 1 = 1,...,n-1,
We say that it is strongly connected if

a,beS =H aAnb$0,
The system of all connected subsets of L will be denoted by
conn(L),
that of the strongly connected ones by
().

1.2, A pre-diameter on a locale L is @ funotion
@:L—R,
(R, is the set of the non-negative reals) such that
(1) 4a(o) = o,
(11) a4b =% d(a) £d(b),
(111) Ye > 0, fala(e) <€ ! 1ims a cover of L.
It is said to be continuous if, moreover,

(C) for each monotorn- / we linearly ordered by £ ) ScL,
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a(\/8) = sup {d(a)]lacsi.

1.3. A pre-diameter d is said to be
-~ & weak diameter if
(": for a, b such that aAabz0,
d(ayb) £ 2 max (d(a),d(b))s
~ an additive diameter if

()2 for a,b such that aa b0,
d(avb)& d(a)+a(b);
~ a star diameter if
(X): for 8 e (L)
d(\/8)« 2 sup {d(a)|aest;
-~ & gtar-additive diameter if
(X4): for 8e (L),
d(\V 8) < sup {da(a)+d(b)la,be 8, a$bi;

~ & strong digmeter if
(8): for Se¢ commn (L),

QS )P wpiinf{{%{ d(ai)laic S, a,=a, & =b, a;A 8 4 %

# 0%la,b &S, adiy
- a metric diameter if
(M): (aA) ana
VxeL VYe>0 3u,v, uax$0$vA x&d(u),d(v)<¢ & d(uv v)>
>d(x) - & .

1.4, Remprk: The following implications are obvious
S = (kA) = (x)

(A) == (W).
In [6y Lemma 5.1] we have seen that (M) = (x). In fact, as
we will shortly see, (M) is the strongest of all the mention-

ed requirements (and, moreover, implies continuity). In the
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next section we will show that the metrio diameters correspond
in the spatial csse exactly to the pseudometrics. Thus, they
can be understood as a natural modification of the notion of
distance for the purposes of general locales.

The reasmon why we list the other mentioned conditions on
pre-diemeters (and no further ones used elsewhere, e.g. in [2])
is, of course, given by the aims of the article. The condition
(W) is the weskest one one needs to induce at least weak unifor-
mities; (A) is very natural and, besides, it is a part of (M);
(x A) is also very natural, probably the most intuitive of all,
and it will play a technical role: a star-additive diameter can
be very satisfactorily epproximated by a metric one: (S) is an
extension of (% A) and will appear as & consequence of (M). The
condition (%) is about the minimum one needs for gensrating
uniformities; besides, star~diameters will also play a techni-
cal role.,

1.5. Theorem: A metric diameter is & continuous strong
diemeter,

Proof: (C): Let Sc L be monotone, Take an € > 0 and
choose u, v such that d(u),d(v)<e , u AV S+0+v A VS and
d(uvv)>d(\V/8S) = & . We have x,y6& S such that xAu0HYA V.
Ift, say, y2x, we have also uAy=0. Thus,

d(uvv)ad(yvuvy) 4d(yvu) + € £d(y) + 2¢
so that

a(y) >da(Vs) - 3¢
Hence, sup {d(y)lyeStzd(/ S). On the other hand, obviously
sup d(y)&d( Vv 8).

(S): Let this not hold. Then, we have an S¢ conn (L) and

en n > 0 such tk-*
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m
a(v8)> sup {inf . F, d(ay)la; 68, a) =8, a =,
a A ai+1*0}la.bes. a%by + 7 -
Take an ¢ > O such that €< -15 7 end choese u, v such that

d(u),a(v) <& , W AVSH04vAVS and d(uvv)>d(\V/S) -~ e.
Consider a,b€S with uana$O04vAb,
I. Let azb, Then we have, in particular,
A VS)»int 4 F dla;)ls 65, 8y =5, 8, = b,
ajAE; 103 +m

and hence there are a; = 8,85,.00,8, = b, 8;A8; 1%0 such that

(1) aV8)>Xa(s) +57 +

By 1.2(111) we can choose u; 6L such that
d(u)<e eandu;sa,nay .
We obtain
d(uvwy)<d(uvey)cday) + <,
a(uyvu,) 4d(a,),

.

Uup o vy g) £ (e, ),
a(u,_4vv)sd(a,vv) £d(a) + €.
Using repeatedly (A) we obtain
d(uvyyveeovu g vv)sdluvyy) + dluyvu,) +...4+
+ d(uy_ vv) s Zd(s,) +2¢
so that
A VS)<d(uvy) + ¢ £ Zd(e) +3e < Tdle,) + g

in contradiction with (1).
II. Let a = b, Choose an arbitrary ¢€3S, c$a (obviously
S has to have at least two elements). We have

m
a(V 8)>1int { :_§1 a(a;)la, = 8, 8, = ¢, 8,48 ,40j+7
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so that, again, there are a; = a, a,,...,a8 =0 such $hat
1
AVS) > Zda) +57m.

We obtain a contradiction
a(VsS)<d(uvy) + € d(uvavy) + & «d(a) + 3e &
&= d4(a) +3e < Ed(a) +F7<a(Vvs). O

2. Spatial ocage: metric diameters and pseudometrios

2.1. In this section, & topological space X = (X,L) is
given, L is the locale of its open sets. To keep the notatden
in accord with that of the general case, we will denete the open
gets in X by lower case Roman letters. The points of X will be
denoted by o« , 3,4 and . If ( is a pseudomeiric on X we
write

QQ,(oc;p) = {flp(,p)<ed-

2.2, Let ® be & bounded pseudometric on the set X, We

construct
4&:L— R +

by putting
(2) a(x) = sup {p(wc, ) 1o, 36 x}.

2.3. Proposition: Let the topology of (x,so) be weaker
than that of X, Then 4 defined by (2) is & metric diameter.
Pxroof is a matter of easy checking. Since the sets
.Q.§> {e3+) are open, we can take for u, v in (M) suitable

.Q(qx..-,%e), n(rs;%c). O
2.4, Let d:L -——7R+ be a metric diameter, define
® IxX—>KR
by putting

(3) go(o(,,[_’.) = inf {d(x) | fo,B3cxi.
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2,5, Propositions The function @ is a pseudometric on
the set X,

Proof: The triangle inequality follows easily from (A),
ga(ec sy ) = O from 1,2(1i1). Obvioudly, @(e,B) =@E(B,x).0

2.6. Lemma: Let ( be constructed from d by (3). Them
_Q.q,(d,'. e) = Vi{x\xel, £€ x, d(x)<ed.

Consequently, the topoiogy of (X, ®) is weaker than L.
Eroof: We have

§’(°"(5)<5 iff Ax o4{x, 33, x €L, such that d(x)<ce. O

2.7. Theorem: The formulae (2) and (3) constitute a one-
one correspondence between the set of all bounded metric diame-
ters d on L and the set of all bounded pseudometriocs @ on X
such that the topology of (X.@) is weaker than L.

Proof: I. Start with a diameter 4, constructgby (3) end
a new diameter 4° from @ by (2). Obviously,

4 (x) £d(x).
Let there be an x and an & > O such that d(x)>d (x) + 3e .
Take u, v such that uAx$04vAx, d(u),d(v)< € and d(uvv) >
>d(x) - € (and, hence, d(uvv)>d’(x) + 2¢€ ). Choose € uAX,
pevAx. Consider an arbitrary we L such that {«,(3}c w. We have
duvv)2d{wvuvv)ed(w) +2¢
and hence
dw)z d(uvy) - 2¢ > a°(x)
so that
?(oc,(s)zd(uvv) -2¢ > d°(x)
in contradiction with the definition of 4 (x).
II. Start with a pseudometric @ , comsiruct 4 by (2) and

then & new pseudometric P’ by (3). We obviously have
P (e, 3) Z2 P (x,R).
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et 9'(0‘.(&)7 e(c<,3) + 3¢ . Consider u = S).(oo;%e),

v -.Q.([A;%e )e Thus, d(u),d(v)< e . Take ¥ e u, de v. We

have

el aely,x) +@l, ) +o(p,d)<p@l(«x,3) + 28

and it ¥ ,d & uor ,d e v obviously @E(y,0')<2e. Thus
d(uvy) £ p(xc,3) + 26 < e’ (x,8) -¢€

in contradiotion with the definition of ©’. O

2.8. Proposition: (Notation from [6).) Let 4 be a metric
diemeter on L, let @ be obtained by (3). Then
' u is open in (X,p) iff uel,
where U is the u-basis {{ald(a) < e}l € >o0%.

Preof: Let u be open in (x,;a). By 2.6, ue L. Let oc be
an arbitirary point of u. Take an ¢ > O such that fL(«C32€ )c u.
Put v =« Q (3 &) and consider 4 ={ald(a)< €3 . We have

Av£u and hence v % e

Since o was arbitrary, u = V{zxix % uk.

On the other hand, let u = V{ xix % u. Take an o« 6 u.
There is an x, x% u such that of € x and there has to be an
€ > 0 such that, for A =f{ald(a) <&}, Ax4u. Obviously,
Q3 e)sax. OO

3. Fabricating diameters with stronger properties

3.1, Por a star diameter 4 on a locale L put

Jg(x) = inf supfd(uvv)luax+0%vax, d(u),d(v)<e}a

3.2, Lemma: Por any x,y6&6L we have
d(xvy)z dlxvy) - a(x) - a(y).
Proof: If x =0 or y = O, the right hand aide is zero.

Thus, we can assume that x%0%y.
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Let J(xvy)<d(xvy) - a(x) - d(y). Then Wé have an ¢,>0
such that, for € < o0
o = sup{d(uvy)iua(xzvy)=*0Fva(xvy), d(w),d(v)< e} <
<d(xvy) - d(x) - a(y).
Choose u, v such that uax$04vAy and d(u),d(v) < € . We have
Adxvy)£d(xvyvuvv)<d(uvy) + d(x) + a(y)
and we obtain a contradiction

o« zd(uvv)Zzad(xvy) - d(x) - d(y) > <. O
3.3. Lemma: We have
H(x) £ I(x) £ a(x).

Proof: If uax#0*vax and d(u),d(v)<€© , we have
d(uvv)zd(xvuvv)<d(x) + 2¢ .
Hence, J'(x)<d(x).
Now, let us have, for some x€L and n > 0,
J(x)< Fd(x) - 7 -
Thus, we have an € > O such that
sup $d(uvv)luax+0+vax, d(u),d(v)< el< é-(d(x) -n).
Teke the system S =fuelLld(u)< € , uax+0% and choose a fixed
v, & S. Thus, xéV&uvvo\uG St and we obtain, by (x),
d(x)< 2 sup -id(uvvo)luss§<d(x) -m
which is & contradiction. O

3.4. Theorem: For any star-additive diameter 4 there is

a metric diameter J° such that
%a £ d <d.

Proof: According to 3.3 it suffices to prove thet the J”
from 3.1 is a metric diameter. Obviously, it is a prediameter
(1.2(11i) is straightforward and 1.2(i) and (iii) follow from
3.3).
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(A)s Let it not hold. Hence, we have some a,bel, aAb+0,
and an M > O such that
d(avd)>d(a) + I(b) + 1 .
Thus, for a sufficiently small € > O,
d'(avb)>sup £{a(u v vy)luyana+0%vyne, d(ny),d(v,y) < e +
+ sup {d(uzv vz)luzz\b=|:o¢v2/\b. d(uz),d(va)< X1 +~151[
Choose u, v, u n(avb)d Opvaiavb), d(u),d(v) <& such that
Jlavb)<d(uvv) - £ 7
so that
d(uvv)>sup {d(uyv vy)l. .3+ supia(u,v pleote
Thus, neither uaa+0*vAa nor uAb:O+vAab and we can assume
uAa$O0%vAD, Choose a wel such that d(w)< € and wa(aAb) 4
%0, We obtain a contradiction
d(uvv)>d(uvw) + dlwvv)zd(uvvyw,.
The metric property: By 3.2 we obtain
4) d‘(x)é%gzo sup {d' (uvvy) + 2g|l uax+0%+vax, d(u),d(v)<
<€},
Let J be not metric. Then we have an €,>0 such that for all
u, v such that Jd(u), d(v) < €, end UAX+04 VA X necessarily
(5) dluvv) £ d(x) - e
Choose an € < % €,- By (4) and 3.3 we have
J(x)<pup {F(uvv) +2¢el ..., F(W,d(v)<e}
end hence, using (5), we obtain a contradiction
F(x)sJ(x) - e, +2¢e < Jd(x). O
3.5. Let f be a pre-diameter., For Scconn (L) and a,bc S
put @y(a,b,S) = inf {-'.g1 t(eg)ley = 8,8y = b8y A8y, 0,
ey St.
Further, put
Me(S) = sup {@,(a,b,5)le,besi.
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3.6. Cbgervation: 1. Let byA by 4 0. Then
(.A.(a,c,s) % w(a,by,8) + (b(ba,o,s).
2, Let 81c 82. Then
(b(a,b,31) z f"(a.bnsz)-
3.7. Por xel put
de(x) = inf { U, (8)ISeconn (L), x £VS%,
Obviously,
dfé.t.

3.8. Theorem: The function 4, is & star-additive diemeter.
Proof: Obviously, cl:r is a pre-diameter. Let i% not be star-
additive, Thus, we have an S € (L) and an & > 0O such that
(6) a,( V' S)>sup {d(a) + d(b)la,beS, axbi+ 3¢ .
Por each a& S choose en S € conn (L) such that
VSgza and w,(8,)<de(a) +¢ .
Thus, by (6), we have
for any a,b&S, a#%b,
A(V8) > w(8,) + @(8y) +&.
Put T = U{S,la&S% Obviously, Teconn (L) and VT z2VS m
that @ (T)Zz4d(\'S) and hence, by (7),

(n

@ (1) > w(S,) + @w(Sy) + &
Thus, there exist u,veT such thati
(8)  ((u,v,T} > @(8,) + @ (Sy).
We cannot huve u,vé S, for an a, since then we would have (mee
3.6.2) @(u,v,T) & (w(u,v,sa) < (""(Sa)' Thus, there are a, b,
atb, ue Sa and chb. Choose an x¢ Sa end & ye& Sb such that
XA y40. Now, (8) and 3.6 yield a contradistion
{u(u,v,T)> H(u,x,sa) + (u.(y,v,sb) z wm(u,x,T) +
+ @ly,v,1) = (u.(u,v,T). m]
3.9, We will formulate one more condition concerning pre-

diemetere f:

- 115 =



(3W): for a,b,c such that aan b$pO0*kdbac,
f(avbvoe)< 2 max (£(a),2(b),2(®)).
_Lemma: Let f satisfy (3W). Let xy,+ce,X, be such that
4N x1+14=0 for 1 = 1,...y0=1. Then
m m
2( \/ )2 .z, £(xy).
Broof by induction on n. For n = 1, £(xy)& zt(xi). Let the
inequality hold for n, comsider x1 yooe 'xn+1’ Put o« = 2: £(xy)

and take the first k such that Z IICRES TN Then

o4 m+4

1 1
£§1 2(xy)< 5 o 4:51 t(x)4 %

and hence, by the induction hypothesis,

-4 +1
‘ L]
£( Y xi) < & , f(-h 4 xi)_.ac

Since also f(xk)é « we obtain, using (3VW),
‘l mel
f( S Xy)é2x = §1 t(xy). O

3.10. Lemma: Let £ be a ster diameter satisfying (3W), let
(4¢ be the function from 3.5. Then for any S< conn (L)
LV 8)£ 4 wm,(S).

Proof: PFix a u,€ S and an ¢ > O. For each ué S choose a

sequence xy(u),...,x (u)e S such that u = x;(u), u = x, (u),
x;(w)nA x4 (W) %0 and
= f(xg(u)) < @p(u ,u,8) + e .
Put s(u) = V x,(u). Evidently, a(u)/\s(v)zuo+0 and u 4s(u)
so that
(9) Vis(u)luesy=VS and {s(w)lucsieS(L).
By 3.9 we have
t(a(u))£2 = £(x (W) < 2 woluy,u, S) +2e 22 (u.f(S) +2¢&
and hence, by (x ) and (9),
t(\VS)<2 sup {2(s(u))luesics & (s) + 4e . O
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3.11, Theorem Por each star diameter f satisfying (3W)
there is a metric diameter d suoh that

F(x) £ a(x) & 2(x).
Proof: Consider first the function d, from 3.7. Let S be
in conn (L), x £V S. By 3.10
2(x) £ 2( V' 8)£ 4 wo(8)
and hence d,(x) = inf { @, (S) | VSzx}2> %t(x).
By 3.8, d, is star additive so that our statement now follows
from 3.4. O

4. (Dia)metrization of uniformities

4.1. A u-basis (resp. wu-basis) A such that F = U (see
[63 3.3, 3.5]) will be referred to as a basis of the uniformity
(resp. weak uniformity) U .
It is said to be meet-closed if
ALBe A=>3Ce€AhR , C<AAB,
Obviously, if A 1is meet-closed then
Ael iff 3Be A , B=<A.
4.2, Por a u-basis (wu-basis) A put
mA = {AA oo AaB A € AT,
By [63 3.4) we ses that mA is a u-basis (wu-basis) again.
Obviously it is meet-closed. Thus, we make an
Observation: If U has & countable basis, it has a count-

able meet-closed basis. O

4.3. Lemma: Let a uniformity (resp. a weak uniformity) U
have a countable basis. Then it has a meet closed basis A =
= {A 4Ayyee0sh y000} Buch that A = {e} and, for each n,
(2)(2)
‘.;:1 '% % (reap. An+1 ‘{ An)o
Proof: Teke & meet-closed basis 3= {B;,B,,...,B ,...}
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of U . Put &) = {e3, A = B,. Let Ayseee,Ay be already defined
so that

() AF¥) < &y (resp. a{2)(2) &) for k<n,

(B) Ao e® for k<n,

(¥) A < B for ken,

There 1s & B such that BZ* < A resp. B((2)2 4 ana e
Bs-< BrABn+1. Put Ln“ = BB' O

4.4. Proposition: For each uniformity (resp. weak uniformi-
ty) U there is a system (’uilisJ) of uniformities (resp. weak
uniformities) with countable bases such that

AeU 12 31 A € Uy,

Proof: Por an A € U choose inductively Aqshysecesdpysece
so that A = Ay, A%, <A (resp. A ). Pt T aU, A, =
=0 =1,2,0..3, U4, - R,. 0O

4.5, For a weak diameter d put

U(d) =4{A132 >0, {ald(a)< €} < A%,

More generally, let & be a system of weak diemeters. Put
U(D) = A where A={{ald(a)<c e} | d6D, € > ot
(using A has been hecessary to ensure the meet property; in the

case of one d this is automatio).

Obviously, U(d), U(D) are weak uniformities. If 4 resp,
all the members of ¥ are star diameters, U(d) resp. U(D) ie
s uniformity.

4,6, Theorem: U is a uniformity with a countable basis 1iff
there is a metric diameter such that U= U(4d).

(Note that this fact provides the formal definition of metrisa-
bility in [3) with a more concrete contents.)
Proof: Consider the basis AO,A1....,An,... from 4.3 and
define f£:L — R , by putting
£(x) = inf {2"0|x<a for some ac Al.
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Obviously, £ is & pre-diameter. Now, let S be as in (L) and
let a(a)22-(®*") £ 211 neS. Thus, we have for each a€S a
b(a) € A, such that b(a)Za, Hence, VS < \Vib(a)lascSicA (c
cL‘;:1 < A, 80 that \/S4£D for some beA . Thus,

£(8) £27(®*1) £or a11 ac S implies £(\/ 8)s 2"
and hence £(\/S)%2 sup {f(a)lacS% so that £ is a star diame-
ter,

Now, let x,y,s be such that xAy*0+ynaz. If £(x),2(y),
£(2)€2~(2*1)  wq have a,b,0¢ A, such that x<a, y4b, s<e.
Hence, avbse ‘*:(xa and av bvceA,(,j% (@ AXY < A, hence
£(xvyve)42™" and we conclude that also (3W) is satisfied.
Thus, by 3.11 there is a metrioc diameter d suoh that

3 t<ast,

We check easily that U= U(f) and that U(L) = U(Q).
On the other hand, obviously every U (d) has the countab-
le basis {{ald(a)< %}\n =1,2,...3 O

4,7. Theorem: For every uniformity U there is a set of
metric diameters &) such that U = U(D).
Proof: follows easily from 4.4 and 4.6, O

4.8. Remark: The constructions of Section 3 have gerved
the purpose of crossing the gap between the star diameters and
the metric ones (of course, this has to be done if we wish to
have a generalization of the well-known metrization theorems -
see Section 2). To prove just that

U is a uniformity with a countable bamis iff there is a
star diameter d such that U = U(4)

(and a spimilar weaker analogon of 4.7) one needs the first half
of the proof of 4.6 only, without any reference to Section 3.
Similarly, one immediately obtains that
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U 1is & weak uniformity with a countable basis iff there

is a weak dismeter 4 such that U = U(4d),

end that

Por every weak uniformity U there is a set of weak dia-
meters J such that U = U (D).

There seems to be a problem of some interest as to whether the

weak diameters in these statements can be replaced by additive

ones.

1
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£3)
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[6l
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