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POINTLESS UNIFORMITIES |. COMPLETE REGULARITY
A. PULTR

Abstract: The equivalence of complete regularity and unifor-
mizabIIIty Is shown for general locales. Also, a characterisa-
tion of complete regularity by means of the behavior of diame-
ters is presented.

Key words: Locale, uniformity and uniformizability, com-
plete regularity, d‘ameter.

Classification: 54E15, 06D10

The definition of uniformity in the form of a system of
covers oan be extended in an obvious way to locales (see also
[5]). In this paper we prove the fact one could expect, namely
that, also in locales, uniformisability coincides with comple~
te regularity.

More explicitly: A system of covers A of a locale L gives
naturally rise to a subset LocL (see Section 2). A locale is
shown to be completely regular iff there is a uniformity A
such that L, = L. (By the way, it is regular iff there is a sy-
stem of covers A such that Ly = L.) Morsover, another charac-
terization of complete regularity by means of separation by di-
ameter functions is presented.

The paper is divided into five sections. The first one
contains the :ioouury definitions and basic fasts, Seetion 2
deals with the sublocales induced by systems of covers. Im

-91 -



Section 3 the notions of uniformity and weak uniformity are
introduced, Section 4 deals with diameters. The characteriza-

tion theorem is proved in the last, fifth section.

1. Preliminaries

1.1. A locale (see, e.g. [6]) is a complete lattice L sa-
tisfying the distribution law xAVA = VixAalaeAl. The bot-
tom resp. top of L will be denoted by

O resp. e,
the pseudocomplement of xe L by
.
An element x is said to be complemented if Xvx = e.
1.2, One writes x < y if there is a z such that
XAZ = 0and yvz = e
(or, equivalently, if Zvy = e).

Hote that x g x 1ff x is complemented. Consequently, Yy« x
with non-oomplemented x implies y=hx,

1.3, A locale is said to be regular iff

x = V{zlz a x} for each x61L
(see, e.g.,[1],031).
1.4. One writes
A y
1f there is a family Xy of elements of L such that

£ =010y k= 0,1,.00 2,z =z, 3y =7,

3 Xg,k+10 and finally x4, = X, ,2k°
A locale is said to be completely regular iff

x = \V{zlz 9 x} for each x
(see e.g. L11, cf. [31,121).

1.5. Lemma; Let R be a binary relation on L such that
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(1) xRy =>xay, and (2) xRy = 3 z, xRzRy. Then
IRy = x a3 ¥.

o

roof: Put x =X, Xy = Y- Let us bave X, defined for

ol
8ll 1<n end all k = 0,1,...,21 #0 that x, Rx; y,q. Put

*n,2k ® Tn-1,k
and choose X, ,,q Such that x, o\ Rx, oy 1BXy 2(k+1)° o
1.6. A cover of a locale L is a subset ACL such that
VA = L.
The system of all covers of L will be denoted by
€(L).
For A,B e €(L) we write
A< B
if for each agA there is a b¢ B such that a<b.
Por A,B € €(L) set
AAB = {anblacA,bs B3,
(Obviously, AAB ¢ €(L).)
Pinally, teke an A e ¢(L). Put
2@ . {avble,per,anb40},
A*¥ = {VBIBcA, (a,beB = anb+0%;
for xe L put .
Ax = \/ialecA,anx 0%,

1.7. Proposition. 1, A< B =) Ax4Bx.
2. (AAB)x<AxABX,

3. A(ax) =A@y,

Proof is straightforward. 03

1.8, Proposition: Let there be an A &€ €(L) such that
Ax<y, Then x « y.

Proof: Put z = V {alaeA,anx = 0%. We have zAx = 0
and zyy2zvAx = VA =e, 0O
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2, Systems of covers, induced sublocales and & characteri-
sation of regularity

2.1, Let A be a subset of ¢(L). We write

x 3y
i1ff there is an A ¢ A such that Ax<y.
2.2, By 1.8 we immediately obtain
Propositions x é y=xagy. 0O
2.3. Also the following statement is obvious:
Proposition: Let A € 5. Then

x 2! y=>x g y. O
2.4, We set
Ly = {xsllx = Viyly 2 31
2.5, From 2.3 we immediately obtain
Propositions Ac B=Lycly. O

2.6, Lemma; Let A c<(L) be such that
ABe A=>AAB e A.

Then u fi x&v ﬂ'\ y = nzwé XAY.
Proof: We have A,B ¢ A such that
Au<x and Bv<y,
Thus, by 1.7.1, (AAB)(uAv) £(AAB)u<£Au<x,
(AAB)(uAvV) 4 (AAB)V£Bv<y,
and hence (AAB)(uav)exaAy. O

2.7. Theorem: Let A c €(L) be non-void and such that
A,B e A=>AAB ¢ A

Then L g is a sublocale of L.
Proof: Obviously,0,e€L, . Now, let x,yeL,. By the dis-
tributivity and by 2.6 we have
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XAy = V{u‘ué xt AVivivd yi = \/{u/\v\ué x&vﬁy} <
é\/&u/\vlu/\vé x/\y}é\/{'lwé xAy € xAY.
Let x, = Viul$ x,;} for 1€ J. Then we have
xjé\/fulu 4 vVt
for all J and hence
Vz < Viuh & Vaievs, O

2.8. Theorem: A locale L is regular iff there is a sys-
tem of covers A such that L = L, -

Proof: If L = LA. s L 18 regular by 2.2, On the other hand,
let L be regular. Put

A = {iZ,y} x,ycL, xayh
We have {X,y}x<y so that now
ray=>xdy,

and hence Lg =L. a

3. Uniformities and uniformizability

3.1. A non-void system WUc%¥(L) is said to be a unifor-
mity on the locale L if

(1) A cUKA<LB=>BelU,

(11) Ae U&BeU =>AABeU,

(1iii%) for each A ¢ 2 there is a B ¢ U such that

B¥<L A (cf. [5]1).

A non-void U 1is said to be a weak uniformity on L if there
hold (1i),(ii) and

(i1i2) for each A € U there is a B ¢ U such that

(32 4,

3.2, A non-void system U c<¢(L) is said to be & unifor-

mity bvasis (resp. a_weak uniformity basis; briefly, u-basis

resp. wu-bagis) if it satisfies (iiix) resp. (iii2).
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3.3, For A c€(L) put
B et 138108 e Ay A AL < AL

3.4, Lemma: We have
(A4 A... ALn)(Z)—< A.§2)/\ ...AA](IZ),
* x *
(A1Aoo./%) - ‘1/\.../\‘no
of: Obviously, it sufficees to prove the statement for

n=2,

I. Let 8y,bj €Ay, a,,b,6 4, be such that (31/\&2)/\
A(byAb,)+0, Then a,Ab,+0+a,Ab, and hence a,v b, & A{2)
(1 = 1,2). We have

(ayA az)v(bll\bz)g: (a1vb1)/\(azvb2).
II. Let Cc A1AA2 be such that
81A 8y DyAD, G C = (a1/\32)/\(b1/\b2)=0-0.
Define C; (i= 1,2) as follows:
€, #{a,6 4, | I a,¢e4,, a;n8,6C%,
c, '{52“‘2 | 3 a6 Aq, 31/\3260}.
Obviously, &,,b4& Cy => 8; A D ;40 s0 that
VCq AV C,€ATAAS,
We have, however, obviously \VC < \/C; and hence VC < VC A

3.5. Theorem: If % is & u-basis, 7L 1s a uniformity. If
U 1is a wu-basis, U 1s a weak uniformity.

Proof: The conditions (i) and (ii) are obviously satis-
fied. (11ix) resp. (1112): Let AqjA...AA <4, A, U .
Choose B,& U such that BY< A, resp. B{2)< A;. Put B = ByA ...
+sA B By 3.4 we have B* < A resp. ¥ O

3.6. A locale L is said to be uniformizable (resp. weak-

1y uniformizable) if there is & uniformity (resp. weak unifor-
mity) on L such that L, = L (ef. [5)).
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3.7. Remark; According to 2.5 and 3.6 we see that for uni-
formizability (resp. weak uniformizability) it suffices to have
a u-basis (resp. a wu-basis) U on L such that Lo= Le

3.8, For a complemented xc¢L and an A & €(L) put

Aox = fanxlacAlu{anlacal.
It Uc<C(L), define U° as

fAoxl|lA ¢ U , x complementeds.
3.9. Proposition: If U is e u-basis (resp. wu-basis), U*
is a u-basis (resp. wu-basis).
Proof: It suffices to realize that if B*< A resp. B(2)<
< A, we have algo (Box)*< Aox resp. (Bo 02 a0x. O

4. Diameter functions and separation
4.1. As ususl, R, is the set of non-negative real mumbers.
A mapping
a:L — R N

is said to be a weak diemeter on L if it satisfies the following
three conditions:

(I) 4 is non-decreasing and 4(0) = O,
(II) for each ¢ > 0, {ald(a) < &} is a cover,
(W) if da(a),d(b) = and a Ab#0 then d(avb)&2eC

A mepping d:L —> R+ is sald to be a metric diameter if it
satisfies (I),(II),

(o) if aAb %0 then d(avb)<d(a)+ d(b), and

(M) for every a#0 and each € > O there are x, y such
that 4(x),d(y) < € , xAa%04yAa and d(xvy)>d(a) - & «

4.2. Remark: The role of the diameters in general looales

is to simulate the distance functions in the spatial ones. In
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our context the two definitions are, roughly speaking, the we-~
akest and the strongest among the suitable ones (in the spati-
al case, the metric diameters are already exactly those given
by d{a) = sup {p(x,y)\x,ys a} with @ 8 pseudometric). In the
literature one encounters diameter functions defined for other
purposes and hence subjected to other kind of conditions {see,
e.g., [41).
4.3. Construction: Let D be a dense subset of the unit

interval I, let it contain O and 1. Let us have a family
(u loc € D) of elements of L such that
w, =v, 3<1=pug<u, uy =e and
< < 3 =u g “(3 .
Por x€ L put
d,(x) = inf{lx2u, §,
d_{x) = sup{cLixau, = 0f.
Pinally define
da(0) = 0, and

ad(x) = d+(x) - d_(x) for x#0.

4.4. Lemma: If x40, we have d_(x)< d,(d).

Proof: Let d ,(x)<d_{x). Then there is an o € D such
that 4, (x) < ¢ <d_(x) and such that x<£u_ . Since cc<d_(x),
we have & (3 with o« <3 < d_(x) such that xAug = 0. Thus,

X = XAU < XAuy = 0. a

4.5, Lemma: ¢, (avDd) = max (d,(a),d (b)),

d_(avb) = min (d_(a),d_(b)).

Proof: Obviously o« = mex (d,(a),d (b))<d (avb)., Now
let (3€ D be such that 3> . Then a%uj; , b£u, and hence
avb&ug . Hence, d . (avbd) < 3.

Obviously « = min (d_(a),d_(v))2d_(avb). Let (B e D be
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such that (3 <« , Then aAug = 0 and bAuﬂ = 0 and hence
(avb)Auy = 0 s0 that d_(avb)z 3. O

4.6, Theorem: The function d is a metric diamneter.

Proof: (I) is obvious.
(I1): Let € > O be given. Choose ;€D so that

0 = O<-°< DC1<...<oCk = 1 and Xipo = €y <€ for all i.

Sinceu_, < u s We have zieL such that

S S SR
u, Az; =0 and u vz, =€,
oy Ly 1
Put bo =V =y, end, for 1>0, bi = ueti+1Azi-1‘ We have
-1
b = @
1',\=/o i

3-1
(Indeed, let us prove by induction that «t\-/o by = u s This ia
bvious £ 1 Fv, - X b, v ( ’ )
obvious for j=i., Now, Yo Pi = aYebPiV 3 =u‘3v 1‘10‘:,H/\z:|_1 =

Au Jv(n Az, 4) =1 Alu, vz, 4) =u )
o Lyyq -1 %341 oy 31 o541
Obviously, d+(v) = 0 and hence d(bo) = d(v) = 0. Further,

= 0 8o that d_(bi) 2061_1.

B (u°‘3+1

b,AQ <2 Au
i “1_1 1-1 di__1

( “
by < u°‘i+1 so that 4,{b;) £ ,

end hence d(byj) £ olyyq = %y_q < © o

(A): 1If aAb#0 we have, by 4.4,
d_(s)<d_(anb)sd, (anb)<d (b)

(0
end similarly d_(b)< d (e).

Using 4.5 we obtain
a(a) + a(b) = 4, (e)-d_(a)+d,(v)-a_(b) = max(d, (a),d,(0))-

- min(d_(a),d_(b)) + min(d,(e),d (b)) - max(d _(a),d_(b)) =

= d(avb) + (a,(x)-d_(3))
and the second summand is non-negative by (1).
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(M) : We can assume d+(e.)>0 and d_(a)<1 since otherwise
we could put x=y=a,

Choose ac1.o(2. ol € D so that
4,(8) -3 & <X, <cx,<d,(8) € c<da) +§E

and a_‘.uw-

Since ud1< “"‘2 there is a £ such that ud1A z = 0 and udzvs = e,

Put x -uoc/\z.
If we had aAz = 0 we would have a = aA(u, vz) = aAu ,
o 2

i.e, a<5u_ contradicting the choice of ne Thus, a As 40 and

2
hence
aAX = (a/\u“)/\r. = 8A 2z F0,
Since xAu“‘ = 0 and x4u, , we have
oA£d_(x)4d, (x) = <
and hence

ax) £ o0 = Xy < € o

Now choose a (3 € D such that
d_()<B<d_(a) +% & -

It a_(a) >0, choose, moreover, (3,, 3, 6D such that
d(a) -ge < by < B,<d_(a)

and 8 weL such that wAu =0 and wvu, = e, Put
A %

upg if d_(a) = 0,
v u{,/\w otherwise.
In the first case we have obviously yAa 4$0. In the second one,
wAR = (w\a)v(uﬂ/\a) = (wvuﬁ)/\a = a so that also here
YA8 = up AwAna = us A a0,
In the first case obviously
a(y) =0, a,(y) <

in the second one we have yaug = 0 and y# up so that
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Bigd_(NN<a(y) <
and hence
Wy)<p- By< e
Pinally, by 4.5,
d(xvy) = max(d (x),d,(y)) - min(d_(x),d_(y)) ze; = 3> 4,(a)-

-fe-(a(e) +3e)=a(a)-6. DO

4.7. Ve say that & function d:L —> R, separates v from u
it
(a) d(v) = 0 and

(b) whenever xAV=+0 and d(x) <1 then x<u.

4.8, Propogition: If v <+J u in L there exists a metirie

diameter aeparating v from u.
Proof: Consider a system xj_j from the definition of <<3 and

put

uj 2'i = x13 with the exception of u = e,
*

The function d from 4.3 separates v from u, LJ

4.9. Proposition: Let U be a wu-basis, If x%y, there
is & 2z such that xg z%y.

Proof: Take an A @ U such that Ax<y and choose 8 B %
such that B(2) < A, Put z = Bx. Thus, xg z. Now Bz = B(Bx) <
<3z 2ax by 1.7 8o that also z Sy, DI

4,10, Propositions 4.9, 2.2 and 1.5 immediately yield

Corollary: If U is a wu-basis then
u
XY = X <IA Y.

4.11, Theorem: The following statements are equivalent:

(i) v is separated from u by a metric diameter,
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(i1) v is separated from u by a weak diameter,
(111) v&u for some wu-basis U :

(1v) vog u.

Proof: Trivially, (1) = (ii).

(11) = (i11): Let 4 be a weak diameter function separa-
ting v from u. Put U={{ald(a)<etle>0 . It is a wu-basis
since fald(a)< %E}(Z)c {ala(a)< €} . Consider the A = {ald(a)<
<1}. Por ae A and e Av+$0 we have a<u so that Av<u and hen-

ce 7‘% U

(iii) = (iv) is contained in 4.10 and (iv) = (i) in 4.8.03

5. Characterizations of complete regularity

501, Lemma: A metric diameter function d has the follow~
ing property:
I SCL is such that a,be S => anb40, then
d(\VS)a?2 sup {d(a)lacSt.
Proof: Let d(V S)>2 sup d(a) + 3& . Consider some x, ¥y
such that x AVS#0+y AVS, d(x),d(y) < ¢ and
Azxvy)>d(VS) - ¢,
Choose 8,b&éS so that aAx+0%*bAy. Thus,
(2) d(xvy)>d(a) + d(b) + 2¢ .
On the other hand,
(3) dxvy)ed(avbvxyvy)<d(avbvz) + € < dlavb)+ 2 .
From (2) and (3) we obtain
d(avbd)>d(a) + d(b)

and hence aAb = 0, O

5.2+ Proposition: Put
U= {{ald(a)< e}l€ >0, d a metric diameter on Lt.

Then U 1is a u-basis and
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vVag w iff v % u.
Ixcof: Texe an A = {ald(a) < &} and put B = {ald(a) <
<y e} . By 5.1, B¥C A Hence U 1is a u-basis and, by 4.10,

v%u—pv«u.

Now, let v <3 u. By 4.8 there ip a metric diameter 4 separat-
ing v from u. Take A = {ald(e)<1}. If anv=+£0 and d(a)<i we
have agu so that Av&u, Thus, v 4 w, O

5.3+ Theorem: Let L be a locale. Then the following sta-

tements are equivalent:

(1) L is completely regular,

(11) each x €L is covered by the elements y £x separated
from x by weak diameters,

(1ii1) each x 6L is covered by the elements y<x separat-
ed from x by metriec diameters,

(iv) there is a u-basis U such that L, = I,

(v) L is uniformizable,

(vi) there is a wu-basis U such that L L,

(vii) L is weakly uniformizable. “

Proofs (1) = (11) =p (1i1) wy 4.11,

(111) == (iv)s Take the u-bagis U from 5.2.

(1v) &=+ (¥) by 3.5 and 2.5.

(1v) => (vi) trivially.

(vi)o=> (vii) Wy 3.5 and 2.5.

(vi1)=> (1): Let ue L. We have a uniformity 2/ such that
I.,u- L. Thus, for en arbitrary uel, by 4.10,

ue Vivir¥ uie Vivivaguiau, 0O
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