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A NONCOMPACT CHOQUET THEOREM 
J. STIPAN 

Abstracts In, this paper we are going to establish the va-
lidity of Choquet s theorem for a class of noncompact closed 
convex sets (see also Section 11 in [7 J) rich enough to include 
the class of weakly closed convex sets of Radon probability me­
asures defined on a metrlzable topological space X* 

Key words and phrases: A bounded convex setf a face of a 
convex set, the barycenter of a Radon probability measure, sim­
plex. 

Classification: Primary 60B05, 28A33 
Secondary 28D05 

1. Introduction. It turns out that the proper tool to link 

the study of noncompact sets of probability measures with the 

"compact Choquet s theory" is the concept of Radon measure (see 

[12] by H. von Weizsacker or [13] and [14l). In comparison 

with the Weizsacker s method we resort to the possibility to em­

bed the space of Radon probability measures into the unit sphe­

re of C*(X) as a face defined by means of Baire measurable af-

fine functions on C*(X) rather than to the possibility "to com-

pactify" the space Xf first. We prefer the method to get a re­

presentation theorem with Borel and Radon representing measures 

loosing of course to some extent the generality of the Weizsac­

ker 's results. The present paper provides at the same time both 

a discussion on the uniqueness of representing measures and an 
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application to the theory of invariant and ergodie measurea. 

2. fair seta. All topological spaces treated here are aup-

poaed to he Hausdorff. Por such a apace X denote by 53(X) 

(350(X)) the 6^-algebra of Borel (Baire) sets, by B(X) (BQ(X)) 

the space of bounded Borel (Baire) measurable functions on X. 

A. probability measure (p.m.) on &(X) (Borel probability measure) 

la called a Radon measure if it is Inner regular w.r.t. the pa-

Ting of compact sets in X. The space of Radon p.m. a on X will 

be denoted by 1Tl(tf1fX). Let M be a bounded convex set in a 

locally convei vector topological spaoe E. Denote by A(M) the 

set of bounded affine and continuous functions on M and remark 

that (E* denotea the dual space to E). 

(1) E*/McA(M), hence the space A(M) separates the points of M. 

Having a Borel p.m. P on the set M it follows from (1) that the­

re la at moat one point m c M such that 

(2) a(m) » P(a) (• / M a dP) holds for each acA(m). 

If this la the case for aome m and Pf we write m » b(P), call 

the element m c M the barycenter of P and aay thct the p.m. P 

has its barycenter in M. 

The following theorem suggests a simplification in the de­

finition of the baryeenter. 

Theorem 1. Let M be a relatively compact convex set in 

a locally convex apace E. Then meM is the barycenter of a Radon 

p.m. P on M if and only If 

(3) a(m) « P(a) for each aeE*/M. 

Proof. We have to verify that (3) implies (2). Put Y » ¥ 

and define a Radon p.m. Q on the compact convex aet Y by 
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Q(B) - P ( B A M ) , B €-ft(Y). 

As the set E*/Y + R is uniformly dense in A(Y) (f7J, p.31), it 

follows from (3) that 

(4) b(Q) » m. 

Howf consider acA(M) and denote by a^*Y—>R (a^jY —*> R) the 

lower (upper) regularization of the function a (see £81 f p.98). 

A simple computation shows that a'*' (a^) is a bounded convex low-

we semicontinuous (conoave upper semi continuous) extension of a 

from M to Y. Thus,it follows from (4) and assertion (a) in [5J, 

p. 274 that 

a(m) m a^(m)^Q(a ) - P(a) - Q(a^)^a^(m) - a(m) 

for each acA(M) f hence m • b(P). Q.E.D. 

Our main interest in this section centers around bounded 

convex sets M in locally convex spaces F which have the property 

that each point in M is the barycenter of a Radon p.m. on M sup­

ported by the set of the extreme points of Mf the set which will 

be denoted by ex(M). 

The difficulty in finding measures supported by the extreme 

points stemsf even in the case of a compact set Mf from the fact 

that the set ex(M) need not be a Balre set. Having a noncompact 

set M we must, moreoverf avoid the situations when ex(M) is an 

empty set. We consult the classical Choquet»Bishop--de Leeuw the­

orem and suggest to pursue "the compact theory" in the following 

way: Denote EX(M) - <P e 7?l(tf1 fM)sP(P) - C for each G^ set 

PcM~ex(M)i. 

Definition. A bounded convex set M c E will be said to be 

fair (respectively, strongly fair) if for eaeh i e U there is a 

measure (respectively, a unique measure) PeEX(M) such that 

m • b(P). 
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Note that each compact set M is fair by Choquet-Bishop-de 

Leeuw theorem or more precisely by Lemma 4.1 in C7jf p. 25 

(which states that each element of M may be represented by a 

maximal Radon p.m. on M) and by Theorem 32,£5], p. 289 (which 

presents the maximal representing measure as a measure that be­

longs to EX(M)). Moreover, eaeh compact strongly fair set is a 

simplex (i.e. compact convex set, eaoh point of whioh is repre­

sented by a unique maximal Radon p.m.) again by Theorem 32 la 

J.5.U On the other hand, an example by Mokobodzky ([7]t P» 72) 

shows that there is a compact simplex which is not strongly fair, 

Considering the category of bounded convex sets in locally con­

vex spaces, we call its two elements M and Y to be isomorphlo 

if there ie an affine homeomorphic bijection (iaomorphiom) 

itM—>Y. If the set M is isomorphic with a subset of X via an 

isomorphism if we shall write M<i*-Y and call the set M to be 

a face in Y if f moreover, 

oty-, «- (1 -oc)y2si(M)f cce(O fD f y1 fy2 eYr=^ y1fy2 €i(M). 

Now, we collect some obvious properties of fair sets. 

Theorem 2. Consider M c E a fair set. Then 

(a) for each m c M there is a Radon p.m. P on M such that 

m»b(P) and P(B) • 0 for each BcM-ex(M) a Bsdre set 

(b) M * 0 -«*> ex(M)*0 

(c) if a bounded convex set M* is isomorphic with M then 

M is a fair set 

(d) if the set M is closed in E then M»co ex(M) (the clo­

sed convex hull in E). 

Proof, (a) implies (b)f directly. Use (1) and the separa­

tion theorem to derive (d) from (a). Statement (a) is a conse­

quence to the following simple 
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Lemma. Every Baire p.m. on an arbitrary topological space 

ii inner regular w.r.t. the paving of Baire G^ eete. (See [11, 

p. 195-199.) 

Our rather complicated way to express that a representing p.m. 

is supported by the extreme points may be sometimes simplified 

in the fashion of Proposition 1.3 in £7] f p. ?• 

Theorem 3. Let M be a bounded metrizable convex eet. Ae-

sume that there is a compact convex set Y such that 

M c L Y and M is a face in Y. 

Then ex(M) is a Qy set In M and we have 

M(M) - 4Pem(tf1fM)tP(ex(M)) - 1}. 

In particular, the set M is fair (respectively, strongly fair) 

if and only If for every m€M there is a Radon p.m. P on M 

(respectively, there is a unique Radon p.m. P on M) such that 

b(P) m m and P(ex (M)) » 1. 

Proof. Without lose of generality assume that M c Y and 

let a me trio d to topologize M. Then 

M-ex(M)- 5 »nf Pn»{m€Mt m-2"1(y+z)f d(yfz)*n"
1
 f yfzcMJ. 

It is sufficient to show that the FM '0 are closed in M: Let 
n 

m e f n be a net tending to some mcM. Then 

• * • 2~1(yoc + z J » d (y*,»2J*n~1» y«,>zaceu* 

Owing to the compactness of Y the nets \j i f i*L.I have cluster 

points yeY f zfcY, respectively, euoh that m*2"" (y+z). Since 

M is a face in Yf we may see that y and z are elements of M 

such that d(yfz)> n . Hence, m ^ F and set ex(M) is a G^ set 

in M. The rest readily follows by Theorem 2(a), given the fact 

that in the metrizable space M the Baire fiT-algebra (the smal­

lest rendering the continuous function measurable) coincides 
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with the Borel ^-algebra. Q.E.D. 

k family of noncompact fair sets rich enough to include 

closed convex seta in the space #Kt,1,X) (for X raetrizable) 

ie provided by the following construction: 

Denote first 

Y(-K) -4ycY:sup{k(y)fk6 3a» ij 

for a set Y and a c lass of functions X from Y into L0y1J. 

Theorem 4 . Let Y be a compact convex eet in a loca l ly 

oonvex apace E. Consider a c lass X of Balre measurable affine 

and eemicontinuoue function© k:Y->C0 t1l . Then each convex c l o -

eed eet McYCfc) i e fa i r . 

Proof. A0 

M m ¥(#/!) and 0\(B) ̂ ^ ( f l n f , 

where M denote© the cloeure of M in Y, we may assume without 

loo© of generality that 

(5) M - Y(-tt), 

First, we claim that 

(6) if Q is a Radon p.m. on Y euch that b(Q) = meM, then the­

re exieta B 6 ̂ ( Y ) , 3 CM euch that Q(B) * 1. 

Indeed, by (a) in L51, p. 274 and (5) 

(7) 1 » eup k^m) • ©up Q(kn)4tQ(sup k ) *1 

n n u n n 

for oome sequence |kn{ c% eince the k © are eemicontinuoue and 

affine. Thus, putting 

B m {ye Y:sup kn(y) * 1£f 

it follow© from (5)»(7) by as©umption JC C B (Y) that the set 

B eatisfies the requirements of (6). 

It is a simple ^^nueouence of (6) that M is a face in Y, hence 
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(8) ex(M) - Mnex(Y). 

To conclude the proof we have to consider a £ M and construct a 

measure PCEX(M) suoh that m * b(P). By Chocrutt-Bishop-de Leeuw 

theorem there i s a Radon p.m. Q on Y such that 

(9) m m b(Q) and Q(P) « 0 whenever PCY-ex(Y) i s a Qy* s e t . 

Putting 

P(AAM) « Q(A) for each A £ .ft(Y)t 

it follows from (6),(9) and Theorem 1 that P is a Radon p.m. on 

M such that m * b(P). It remains to show that PcEX(M). Take a 

Gj. set PcM-ex(M) and write P • I 1 n M where P-j CY is a Qy> set 

in Y. Furthermore, consider the set B constructed in (6) and 

£ > 0. By the previous lemma there is a set f^cB which is G^ 

in Y such that Q(P2) > 1 - & holds. It is a consequence of (8) 

that 

P.. A P2 c Pt n B c M-ex(M) c Y-ex(Y). 

Hence, it follows from (9) that 

p(p) m Q ( P 1 A B ) - < Q ( P 1 A P 2 ) + & m e f 

since the set P-jAPg is a Ĝ * set in Y disjoint from ex Y. Thus, 

P(P) - 0 and P€EX(M). Q.E.D. 

The following theorem la a useful tool to link the concept 

of a strongly fair set with the concept of a simplex. 

Theorem g. Let M be a fair metriliable convex set. Assume 

that there is a compact simplex S suoh that 

M d » s and M is a face in S. 

Then the set M is strongly fair. Moreover, the map m —» P from 

M to EX(M) that is established by the relation m«b(P|B) has the 

following properties: 

(i) If ex(S) is closed set then the map m — > Pm is conti­

nuous. 
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(ii) If the topology of M ie seoond countable then the map 

m — * P„, ie Borel meaeurable m 

provided that the topology of M ie the relativized weak topology 

of m(t f1 fM). 

Proof. Without lose of generality we assume that McS. By 

Theorem 3 we have 

EX(M) »-;P € m(tf1fM):P(ex(M)) » 1}. 

Put 

eP(B) - P(BAM) for each B e .B(S) and PeBX(M). 

Note that for PeEX(M) the Radon p.m. eP ie maximal on S by Co­

rollary 9.8 in 173, p. 70. Indeed, if K cS-ex(S) is a compact 

set then 

eP(K) - P(KAM)^P(fc-ex(M)) - 0t 

since the set M is a face in S. 

Thus, the map 

(10) P —* eP is an injection from EX(M) to the set of maximal 

measures on S such that b(eP)«b(P) holds if the measure P haa 

its barycenter in M. 

Hence, the set M ie strongly fair by (10) as the set S ie simp­

lex. Furthermore, denote by U(M) the space of bounded functional 

on M which are uniformly continuous with respect to the unifor­

mity relativized from S to M. By Theorem 26 in C41, p. 195 end 

Tletze extension theorem each f e U(M) may be extended to eome 

.FcC(S). As 

P„(f) • eP^dF) for each f CtJ(M) and mc M m m 
it follows from (10) and Proposition 9.10 in t71, p. 71 that 

(11) m—•-?„,(*) is a Borel meaourable map for f «U(M)f 

(12) m—*P m(f) is a continuous map for feU(M) provided that 

ex(S) ie a closed set. 

80 -



low, it follow* by Theorem 8.1 in £9}t P» 41 that the sets 

(13) A(P0,ff fc) » 4PGBX(M):tP(f)-P0(f)|< e } t 

P0ftEX(M)f £ > 0f f 6U(M)f 

form a subbase for the weak topology of EX(M). Thus, if ex(S) 

is a closed set, the map m — * Pm is continuous according to (12). 

If the topology of M is second countable, the same applies for 

the weak topology of EX(M) (Theorem 11.2 in C111, p. 49) and the­

refore the Borel 6*-algebra in £X(M) la generated by the subbase 

(13)» The map m — > ?m ia Borel measurable by (11). Q.E.D. 

3» Convex sets of Radon measures. Conaider a normal topo­

logical space X and denote by ttUtfX) the veotor space of boun­

ded ^-additive Borel aet function© which have it© total varia­

tion inner regular w.r.t. the paving of compact sets in X. Note 

that the space 1TL(tfX) ia locally convey when topologized by 

its usual weak topology. 1.e., the coarsest topology for which 

all maps m — * m(f) (• J* f dm) from 17l(tfX) to R are continuous 

as f varies in the aet C(X) of all bounded continuous function© 

on X. 

Furthermore, identify the weak* topologized apace C*(X) with the 

space of bounded finitely additive regular set function© on the 

algebra ?(X) generated by the closed ©eta in X (Riesz theorem, 

[21, p. 284)• Considering the canonical injection i: 7Tl(tfM) —-> 

— + C*(X) and putting 

(H) Y «\miC*(X):m>Of m(X) « 1* 

it is easy to see that 

(15) Y is a compact convex set 

(Alaoglu theorem, [.2]» P» 459) 
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(16) is 77l(tt1tX)—» Y is an isomorphism in the sense of Sec­

tion 2 

(Oarathledory theorem and Proposition 1*6*2 in £63, p. 27) and 

(17) i(HUtt1tX)) « {m€Yssup{m(K)f C c X a compact set} « 1|. 

Iowf we are prepared to apply Theorem 4 to get a represen­

tation theorem for the space 77l(t,1,I). 

Theorem 6* Let X be a metrisable space* Then each closed 

convex set M c W,(tt1 fX) is fair and it is strongly fair if 

(8) i(M) • i(17i(tt1tX))n S for some compact flimplex ScC*(X). 

Proof* Hote that eaoh metrizable apace is normal and thus 

we may employ the setting and notation (14)-(17). Denote by % 

the set of all maps m —* m(K) from Y into [0,11 where K varies 

in the set of all oompaots In X* Obviously, 

i(m(tf1fX)) - Y(%) 

by (17) where 1 denotes the canonical isomorphism (16). Now, 

the closed convex set l(lf)cY(3C) would be a fair set if only 

the elements of % were affine, upper serai continuous and Baire 

measurable (according to Theorem 4)* We only need to verify that 

KcX, a compact set --»-*> m—»>m(K) is upper semi continuous 

and Baire measurable on Y. 

To this end note that m(K) • inf m(fn) for all m6Y f where *C*nl 

is a sequenoe of continuous bounded functions decreasing to 

the indicator function of K. Thus the map m —> ra(K) being the 

infimum of a countable subset of C(Y) is upper semioontinuous 

and Baire measurable on Y. The set M is fair by Theorem 2(c)* 

Finally, (S) and (17) imply that M is a face in S. Thus, 

the set M is strongly fair by Theorem 5. Q.E.D. 
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In the special case of the space 1Tl(tfX) we may he a lit­

tle more specific about the properties of the representation 

suggested by the definition of a fair set. Having a set 

M c 7/l(tf1,X) we say that a Radon p.m. P on M is a t-Radon p.m. 

if 

supiP(T), T € 5i(M)f T a tight sett - 1. 

Recall that a set T c m(t,1fX) is tight if 

for each e >• 0 there is a compact set KcX such that 

m(K) >1 - 6 for me T. 

Note that there is a family of topological spaces (called Pro-

horov spaces) for which the oompact subsets of 77l ( t ,1 tX ) are 

tight (see [101). Hence, if X is a Prohorov s spaoe then each 

Radon p.m. on 17l(tf1,X) is t-Radon. 

Theorem 7» Let X be a normal topological space and 

M c 17l(tf1fX) a closed oonvex set. Consider m 6 M and a Radon 

p.m. P on M. Then 

(a) b(P) « mQ<===-> mQ(f) « / M m(f)P(dm)f f *C(X) f 

(b) b(P) « m 0^-^ mQ(g) - f u m(g)P(dm) for all g€B(X). 

(c) P has its barycenter in M if and only if it is t-

Radon. 

Proof. The equivalent definition (a) is a simple conse­

quence of Theorem 1 and Theorem 9 in £2], p. 456, applied to 

the relatively compact convex set i(M)CY (see (14) ,(15) ,(16)). 

The assertion (b) will be proved for a bounded upper semioon-

tinuous function g, firsts We rely on the *tf-additivity of the 

Radon p.m. s m fm«M f P and the equation 

g - inf if, f «C(X)f fzg? 

to get the following more general version of (b): 
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(18) Let m be a <r -addi t ive Borel p.m. on X such that 

Then 

mQ(f) m / M m(f)P(dm) holds for each f e C ( X ) . 

m (g) • / n m(g)P(dm) for each bounded semicontinuous 

function gsX—* R. 

Now, the se t of a l l g i B ( X ) for which the re la t ion holds i s • 

l inear subspace closed under the sequential bounded convergen­

ce, and includes the Indicator functions of closed (open) s e t s , 

hence a l l of B(X). 

To prove (c) assume f i r s t that b(P) - m for some a 6 M 

and consider a non-decreasing sequence iKJi of compact s e t s suoh 

that m 0 (K n ) t1 . I t follows from (b) that 

m0(KQ) • fu m(Kn)P(dm), n e l 

and hence m(Kn) t 1 almost surely on M w.r . t . P. Take 6 ^ 0 . 

Applying Egorof f 's theorem we obtain a set T c &(M) such that 

P(T)>1 - £ and m(Kn)t 1 uniformly for m«T. Thus, the se t T 

i s t ight and the measure P t-Radon. 

Om the other hand, eensider a t-Radon p.m. P. Using the 

r - a d d i t i v i t y ergament in the seme way as in the proof of (b) 

one proves that the l inear functional 

f —*» / M m(f)P(dm) (from C(X) to R) 

satisfies the requirements of Daniell's theorem (see £63, p.66). 

Hence, there is a regular X -additive Borel p.m. m on X such 

that 

(19) m0(f) - J H m(f)P(dm) holds for f€C(X). 

fe prove that m is a Radon p.m. • To this end take & > 0 and 

a tight set T cft(M) such that P(T)>»1 - C . The tightness of T 

implies that there is a compact set KcX such that m(K);>1 - C 
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for each m«T. it follows from (19) and (18) that 

m0(X-K) - / M m(X-K)P(dm)^2 & . 

Thus, m is a regular Borel p.m. such that 

sup \m 0(K) 9 Kcl, K a compact set! « 1 

and therefore a Radon p.m. 

Bow, as the set M is convex and closed in 7ft, (t,X) we sim­

ply apply the separation theorem (£2J9 p. 452) to verify that 

m 0*M. Finally, it follows from (19) and (a) that b(m0) » P. 

Q.E.D. 

It is very simple, now, to summarize our preceding results 

to get the following representation theorem for a metrizable 

space: 

Theorem 8. (Compare with Theorem 1 in L12].) Let X be a 

metrizable space and M c 7ft(t919X) a nonempty closed convex s e t . 

Then 

(a) ex(M) i s a nonempty Gj se t in M such that M«c"d~ ex(M) 

(the closed convex hull in f?l(t919X)) 

(b) for each reM there i s a t-Radon p.m. Pr on M such 

that 

(R) Pr(ex(M)) » 1 and r(g) » / M m(g)Pr(dm)9 g*B(X). 

Moreover, i f the se t M i s such that (S) in Theorem 6 holds for 

some compact simplex S, then 

(c) for each rerM there i s a unique Radon p.m. P on M 

satisfying requirements (R) and 

(d) the map r —> Pp from M into EX(M) established by (c) 

i s continuous i f ex(S) i s a closed se t and i t i s Borel measur­

able i f X i s a separable space. 

Proof, (a) follows immediately from Theorem 6 and 2. As 

- 85 



far as ( b ) f ( o ) f ( d ) are conoemed, l e t us remark f i r s t that the 

set M c m ( t f 1 f X ) inher i t s i t s metrizabi l i ty (separabi l i ty) from 

the space Xf see Theorem 13 in [11.3 (Theorem 11.2 in £7Jf p. 49) . 

Thus, i t fol lows from (17) and the fact that JMX) - JhQW that 

we may apply Theorems6, 3 and 7 to get a ver i f i ca t ion of (b) . 

Obviously, (o) and (d) are simple consequences to Theorems 6 

and 5. Q.E.D. 

The representation (B) in Theorem 8 suggests to consider 

the veotor spaoe /W(tfM) endowed with the B(X)-topology of se t 

wise convergence on the tf-algebra 33(X). Recall that the l o c a l ­

l y convex B(X)-topology i s the topology which makes the set of 

funotionals m—*• m(g) f g€B(X) to coincide with the space of a l l 

B(X)-continuous funotionals on 4ft (t ,X) (see 12 ] f p. 453-456). 

Let c"b"bA denote the closed convex hull of a se t A in 77t(t,X) en­

dowed with the B(X)-topology while co A continues to denote the 

closed convex hull w . r . t . the weak topology of 77I(t,X). 

Theorem 9. Let X be a metrizable topological space and 

M c lU( t f 1,X) a convex set which i s weakly closed. Then M i s 

B(X)-closed and cobex(M) » M. 

This i s an immediate consequence of Theorem 8 (a)9(b) and 

of the separation theorem applied to the set co*bex(M) in the 

B(X)-topologlsed spaoe /7Tl(tfX). 

4. Ergodio and invariant measures. Let X be a topological 

space, & a family of continuous maps TsX—*• X. Denote by I((P) 

the set of a l l X-invariant Radon p.m. s on I , by Eif) the set 

of e l l ergodlo elements of I ( T ' ) . Recall that a p.m. .m i s tT-in-

variant i f 

m(T*1B) - m(B) for B 6 ft(X) and T « T 

86 -



and that a CT-invariant p.m. m is ergodio if 

m(T"1BAB) - Of T € T*** m(B) « 0 or 1 f B#4*(X). 

Theorem 10. (See also 13] and 112).) Let X at a matrim-

able space, T a set of continuous maps TsX—* X. Than t(T) 

i s a Gf sat in 1(T ) and to each r c l ( f ) there i s a unique 

t-Radon n.m. Pp on I(T) such that 

(20) P r ( B ( r ) ) - 1, r(g) « J I ( : r ) m(g)dF r f g€B(X) . 

Moreover, 

K T ) * « ^ B ( r ) + 0f S3 B(O') - I(T) 

and assuning that X is a separable space, then the map r — > ? r 

established by (20) is Borel measurable. 

Proof. It is easy to see that I(T) is a closed convex 

set in 77l(t,1,X) and hence a fair set according to Theorem 6. 

To see that it is a strongly fair set we shall verify condition 

(S) of the latter theorem. Define mt«C*(X) for mcC*(X) and 

T € T by 

mT(f) « m(f *T) f feC(X). 

Consider a compact convex set (see (14) and (15)) 

S « *m*YsmT - mf I t f j c C*(X)f 

the set for which 

(21) KKT)) - i(m(t,1fX))nS 

holds according to (17)* To see that S i s a simplex, consider 

the convex cone generated by S, i . e . 

# «$m*C*(X)*m*O f mT « m for T* T\ % 

and show that i t i s a sublatt ioe of the vector l a t t i c e C*(X). 

Indeed, having m , n t S , T € T and 0-&feC(X) we may write by 

3 .6 .6 Corollary in £81 f p. 62 that 

( m v n ) T ( f ) * supinKf-joT) + n ( f 0 « T ) f 0 * f 1 f f 2 €C(X) f 
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f1 + f2 - f \ - ( m v n ) ( f ) . 

Thus, (mvn)T>mvn and since (mvn)T(1) : i v n ( 1 ) for the oor.-

stant function 1 we conclude that (mvn)T • mvn. Hence, the 

set S i s a simplex and set 1(0^) strongly fa ir by (21) and The­

orem 6. 

The res t of our assert ion immediately follows from Theorem 

2 and Theorem 8 f since ex(KCT')) • B( j ' ) by Proposition 10.4 i a 

L73f p. 81. Q.E.D. 
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