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A NONCOMPACT CHOQUET THEOREM
J. STEPAN

Abstract: Ip this paper we are going to establish the va~
1idity of Choquet s theorem for a class of noncompact closed
convex sets (see also Section 11 in [7]) rich enough to include
the class of weskly closed convex sets of Radon probability me-
asureg defined on a metrizable topological space X.

Key words and phrases: A bounded convex set, a face of a
ognvex set, e barycenter of a Radon probability measure, sim-
plex,

Classification: Primary 60B05, 28A33
Secondary 28D05

1. Introduction. It turns out that the proper tool to link
the study of noncompact sets of probability measures with the
"compact Chnquet's theory™ is the concept of Radon measure (see
[12] by H. von Weizsacker or [13] and [14]). In comparison
with the Weizsacker ‘s method we resort to the poasibility to em-
bed the space of Radon probability measures into the unit sphe-
re of C¥(X) as a face defined by means of Baire measurable af-
fine functions on C¥(X) rather than to the possibility "to com-
pactify™ the space X, first. We prefer the method to get a re-
ﬁreaentation theorem with Borel and Radon representing measures
loosing of course to some extent the generality of the Weizsac-
ker s results. The present paper provides at the same time both

a discussion on the uniqueness of representing measures and an

-73 -



application to the theory of invariant and ergodic¢ measures.

2, Pair sets. All topological spaces treated here are sup-
posed to be Hausdorff. For such a space X denote by IJXX)
(fBo(x)) the 6'~algebra of Borel (Baire) sets, by B(X) (Bo(x))
the space of bounded Borel (Baire) measurable functions on X.

A probability measure (p.m.) on 3(X) (Borel probability measure)
is called a Radon meagure if it is inner regular w.r.t. the pa-
ving of compact sets in X. The space of Radon p.m.s' on X will
be denoted by M (t,1,X). Let M be a bounded convex set in a
locally convex vector topological space E. Denote by A(M) the
set of bounded affine and continuous functions on M and remark
that (E* denotes the dual space to E).

(1) EB*/McA(M), hence the space A(M) separates the points of M.

Having a Borel p.m. P on the set M it follows from (1) that the-

re 1s at most one point meM such that
(2) a(m) = P(a) (= [ @ dP) holds for each a€A(m).

If this is the case for some m and F, we write m = b(P), call
the element mg M the barycenter of P and say thet the p.m. P
has its barycenter in M.

The following theorem suggests & simplificaticn in the de-
finition of the barycenter.

Theoxrem 1, Let M be a relatively ccmpact convex set in
a locally convex space E, Then mgM is the barycenter of a Radon

peme P on M if and only if

(3) ea(m) = P(a) for each a6 E¥/NM,

Proof, We have to verify that (3) implies (2), Put Y « W
and define a Radon p.m. Q om the compact convex set Y by
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Q(B) = P(BNAM), B e RXY).

As the set E*/Y + R is uniformly dense in A(Y) ([7], P.31), it
follows from (3) that

(4) b(Q) = m,

Now, consider aé A(M) and denote by a¥:Y —> R (aT:Y — R) the
lower (upper) regulsrization of the function & (see [8], p.98).
A gimple computation shows that at (aT) 1s & bounded convex low-
we semicontinuous (concave upper semicontinuous) extension of &
from M to Y. Thus,it follows from (4) and assertion (a) in [5],
p. 274 that

a(m) = e¥(m)< Q(a ) = P(a) = Q(eT) <aT(m) = a(m)
for each a¢ A(M), hence m = b(P), Q.E.D.

Our main interest in this section centers around bounded
convex sets M in locally convex spaces F which have the property
that each point in M is the barycenter of a Radon p.m. on M sup=
ported by the set of the extreme points of M, the set which will
be denoted by ex(M).

The difficulty in finding measures supported by the extreme
points stems, even in the case of a compact set M, from the fact
that the set ex(M) need not be a Baire set. Having a noncompact
set M we must, moreover, avold the situations when ex(M) is an
empty set. We consult the classical Choquet-Bishop-de Leeuw the-
orem and suggest to pursue "the compact theory" in the following
way: Denote EX(M) = {P & M (t,1,M):P(F) = C for sach G set

Pc M-ex(M)t.

Definition. A bounded convex set MCE will be said to be
fair (respectively, sirongly fair) if for each me M there is a
measure (respectively, a unique measure) Pe EX(M) such that

m = b(P).
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Note that each compact set M is fair by Choquet-Bishop-de
Leeuw theorem or more precisely by Lemma 4.1 in [7], p. 25
(which states that each element of M may be represented by a
meximal Radon p.m. on M) and by Theorem 32,[5], p. 289 (which
presents the maximal representing measure as a measure that be-
longs to EX(M)). Moreover, each compact strongly fair set is a
simplex (i.e. compact convex set, each point of which is repre-
sented by & unique meximal Radon p.m.) again by Theorem 32 in
[5]. On the other hand, an example by Mokobodzky ([7], p. T2)
shows that there is & compact simplex which is not strongly fair,
Considering the category of bounded convex sets in locally con-
vex spaces, we call its two elements M and Y to be isomorphio

if there is an affine homeomorphic bijection (isomorphism)

isN~—> Y, If the set M is isomorphic with a subset of Y via an
isomorphism i, we shall write HC‘LvY and call the set M to be

a face in Y if, moreover,
ay, = (1 -~x)y, 61(M), x e(0,1), 79,5, 6 Y =p Jq,¥, €1(M).

Now, we collect some obvious properties of fair sets.

Theorem 2. Consider McCE a fair set. Then

(a) for each me&M there is a Radon p.m. P on M such that
m=b(P) and P(B) = O for each B¢ M-ex(M) a Baire set

(b) Mg =p ex(M) ¢

(¢) 1f a bounded convex set M’ is isomorphic with M then
M* is & fair set

(d) 1if the set M is closed in E then M=co ex(M) (the clo-

sed convex hull in E).

Proof. (a) implies (b), directly. Use (1) and the separs-
tion theorem to derive (d) from (a). Statement (a) is a conse-

quence to the following simple
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Lemma, Every Baire p.m. on an arbitrary topological space
is inner reguler w.r.t. the paving of Baire Gd" pets. (See [1],
pe 195-199,)
Our rather complicated way to express that a representing p.m.
is supported by the extreme points may be sometimes simplified
in the fashion of Proposition 1.3 in [T71, p. 7.

Theorem 3. Let M be & bounded metrizable convex sei., As-

sume that there is a compact convex set Y such that
Mcl ¥ and M 15 & face in Y.

Then ex(M) is & Gy set in M and we have

EX(M) = {PeM(t,1,M):P(ex(M)) = 1},
In particular, the set M is fair (respectively, strongly fair)
if and only 1f for every m& M there is a Radon p.m. P on M
(respectively, there is & unique Radon p.m. P on M) such that
b(P) = m and P(ex (M)) = 1,

Proof. Without lose of generality a&ssume that McY and
let & metric 4 to topologize M. Then

M-ex(M)= (.13 Py Fo=imem: m=2"" (y+z), d(y,z)'n'1, y,zeMi.

It is sufficient to show that the P ‘s are closed in M: Let
I&G rn be a net tending to some mg M. Then
m = 2-1 (3 +zw), d(yﬁ,z@)z n"1, Y, 0%, €M

Owing to the compactness of Y the nets {y“_i N {za‘i have cluster
points yeY, z6 Y, respectively, such that n=2"" (y+z). Since
M is a face in Y, we may see that y and z are elements of M
such that d(y,z)2 o', Hence, meP and set ex(M) is a Gy set
in M. The rest readily follows by Theorem 2(a), given the fact
that in the metrizable space M the Baire & -algebra (the smal-

lest rendering the continuous function measurable) coincides
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with the Borel 6-algebra. Q.E.D.

A family of noncompact fair sets rich enough to include
closed convex gets in the space M t,1,X) (for X metrizable)
is provided by the following construction:

Denote first
Y(K) = {yeY:supik(y),k € K= 1}

for & set Y and a class of functions X from Y into [0,1].

Theorem 4, Let Y be a compact convex set in a locally
convex space E. Consider & class X of Baire measurable affine
end semicontinuous funcitions k:Y —[0,1]1. Then each convex clo~

sed set Mc Y(J() 1is fair.

ProoZ., As

M = (/M) and R (M > B (Y)nH,
where M denotes the closure of M in Y, we may assume without
loss of generality that
(5) M= Y(X).

Pirst, we claim that

(6) 1if Q is a Radon p.m. on Y such that b(Q) = m&M, then the-
re exists B ¢ S'SO(Y), BcM such that Q(B) = 1.

Indeed, by (@) in [51, p. 274 and (5)
(7 1 = sup kn(m) = sup Q(k )= Q(sup k) 41
n n
for some sequence {kn'; c X since the kn's are semicontinuous and
affine, Thus, putting
B ={yeY:sup k (y) = 1,

it follows from (5),(7) by assumption KX ¢ B,(Y) that the set
B satisfies the requirements of (6).

1t is a simple r~anrecuence of (6) that M is a face in Y, hence
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(8) ex(M) = Mnex(Y).

To conclude the proof we have to consider mecM and construct a
measure P€EX(M) such that m = b(P). By Choquet-Bishop-de Leeuw
theorem there is a Radon p.m. Q on Y such that

(9) m = b(Q) and Q(P) = O whenever PcY-ex(Y) is a G, set.

Putting

P(ANM) = Q(A) for each A € 3(Y),
it follows from (6),(9) and Theorem 1 that P is a Radon p.m. on
M such that m = b(P). It remains to show that P gEX(M). Take &
Gy set FcM-ex(M) and write F = P;n M where P, CY is a G set
in Y. Purthermore, consider the set B constructed in (6) and
€ > 0. By the previous lemma there is & set F,CB which is Gy
in Y such that Q(F,)>1 -¢& holds. It is & consequence of (8)
that

F,NF,C FynBcN-ex(M) c Y~ex(Y).
Hence, it follows from (9) that

P(F) = Q(F{nB)<Q(PNP,) +E = &,
since the get P1r\ 22 is a Gd' gset in Y disjoint from ex Y. Thus,
P(P) = 0 and Pe EX(M). Q.E.D,

The following theorem is a useful tool to link the concept
of a strongly fair set with the concept of a simplex.

Theorem 5. Let M be & fair metrizable convex set. Assume
that there is & compact simplex S such that
Mcl, S enda M is a face in S.

Then the set M is strongly fair, Moreover, the map m —> 1’m from
M to EX(M) that is established by the relation m=b(P,) has the
following properties:

(1) If ex(S) is closed set then the map m —> P, is conti-
nuous.
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(ii) If the topology of M is second countable then the map
m —> P 1s Borel measurable
provided that the topology of M is the relativized weak topolog&y
of M(%,1,NM).

Proof, Without loss of generality we assume that McS. By
Theorem 3 we have

EX(M) = {P € M(t,1,M):P(ex(M)) = 13.

eP(B) = P(BNM) for each B ¢ B(S) and PgEX(M).
Note that for PeEX(M) the Radon p.m. eP is maximal on S by Ce~
rollary 9.8 in [71, p. 70. Indeed, if K cS-ex(S) is a compact
set then

eP(K) = P(KNM) < P(M~ex(M)) = O,
since the set M is a face in S.

Thus, the map

(10) P —» eP is an injection from EX(M) to the set of maximal
measures on S such that b(eP)=b(P) holds if the measure P has
its barycenter in M.

Hence, the set M is strongly fair by (10) as the set S is simp-
lex. Purthermore, denote by U(M) the space of boundsd functions
on M which are uniformly continuous with reaspect to the unifor-
mity relativized from S to M. By Theorem 26 in [4]), p. 195 and
Tietze extension theorem each f ¢ U(M) may be extended to some
TeC(s). As
P (2) = eP (¥) for each £ U(N) and m¢ M
it follows from (10) and Proposition 9.10 in {71, p. 71 that

(11) m—>P (f) 18 a Borel measurable map for féU(N),

(12) m ——-hPm(f) is a continucus map for fe€ U(M) provided that

ex(S) is a closed set.
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Now, it follows by Theorem 8.1 in [9], P. 41 that the sets

(13) A(P,,f, &) = {PGEX(M): |P(£)-P (f)I< €},

P,&EX(M), € >0, f€U(M),
form a subbase for the weak topology of EX(M). Thus, if ex(S)
is a closed set, the map m —» Pm is continuous according to (12).
If the topology of M is second countable, the same applies for
the weak topology of EX(M) (Theorem 11.2 in [11], p. 49) and the-
refore the Borel 6-algebra in EX(M) is generated by the subbase
(13). The map m —> P, is Borel measurasble by (11). Q.E.D.

3. Convex sets of Radon measures. Consider a normal topo-

logical space X and denote by 717U t,X) the vector space of boun-
ded &-additive Borel set functions which have its total varia-
tion inner regular w.r.t. the paving of compact sets in X. Note
that the space M. (t,X) is locally convex when topologized by
its usual weak topology, i.e., the coarsest topology for which
all maps m —» m(f) (= ft dm) from TM(t,X) to R are continuous
as f varies in the set C(X) of all bounded continuous functions
on X,
Purthermore, identify the weak¥ topologized space C¥(X) with the
space of bounded finitely additive regular set functions on the
algebra % (X) generated by the closed sets in X (Riesz theorem,
(21, p. 284). Considering the canonical injection i: M(t,M) —
—> C¥(X) and putting

(14) Y =$meC*X):m20, m(X) = 1}
it 18 easy to see that
(15) Y is a compact convex set

(Alaoglu theorem, (21, p. 459)
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(16) 41: M(t,1,X) —> Y is an isomorphimm in the sense of Sec-
tion 2

(Carathéodory theorem and Proposition 1.6.2 in [6], p. 27) and
(17 1(M(t,1,X)) = {meYssup {m(K), KcX a compact set} = 1},

Now, we are prepared to apply Theorem 4 to get a represen-~

tation theorem for the space M (t,1,X).

Theorem 6. Let X be a metrizable space. Then each closed

convex set M c M (%,1,X) is fair and 1t 1s strongly feir if

(8) 41(M) = 1(M(%,1,X))n S for some compact simplex Sc C¥X).

Proof. Note that each metrizable space is normal and thus

we may employ the setting and notation (14)-(17). Denote by X

the set of all maps m —> m(K) from Y into [0,1] where K varies
in the set of all compacts in X. Obviously,
1(M(t,1,X)) = X(K)

by (17) where i denotes the canonical isomorphism (16). Now,
the closed convex set i(M)c Y(XK) would be a fair set if only
the elements of ¥ were affine, upper semicontinuous and Baire
measurable (acocording to Theorem 4). We only need to verify that
KCX, a compact set =p m —>m(K) is upper semicontinuous
and Baire measurable on Y.
To this end note that m(K) = inf m(fn) for all m&Y, where {fn}
is a sequence of continuous bounded functions decreasing to
the indicator function of K. Thus the map m —» m(K) being the
infimum of & countable subset of C(Y) is upper semicontinuous
and Baire measurable on Y. The set M is fair by Theorem 2(c).
Pinally, (S) and (17) imply that M is a face in S. Thus,
the set M is strongly fair by Thenrem 5. Q.E.D.
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In the special case of the space M {(t,X) we may be a 1it~
tle more specific about the properties of the representation
suggested by the definition of a fair set., Having a set
M c M(t,1,X) we say that a Radon p.m. P on M is a t-Radgn p.m.
if

sup {P(T), T € B(M), T a tight setl = 1,

Recall that a set T ¢ M(t,1,X) is tight 1f
for eacn € > O there is a compact set KcX such that
m(K)>1 - ¢ for meT.
Note that there is e family of topological spaces (called Pro-
horov ‘spaces) for which the compact subsets of M(t,1,X) are
tight (see [101). Hence, if X is a Prohorov s space then each
Radon p.me. on M(t,1,X) is t-Radon.

Theorem 7. Let X be a normal topological space and
Mc M(t,1,X) a closed convex set. Consider m 6 M and a Radon
pems P on M. Then

(8) b(P) = mye= m (£) = [, m(£)P(am), TeC(X),

(v) B(P) = m &> m (&) = fll m(g)P(dm) for all ge B(X).

(¢) P has its barycenter in M if and only if it is t-
Radon.

Proof. The equivalent definition (a) is a simple conse-
quence of Theorem 1 and Theorem 9 in [2], p. 456, applied to
the relatively compact convex set i(M)C Y (see (14),(15),(16)).
The assertion (b) will be proved for a bounded upper semicon-
tinuous function g, first: We rely on the < -additivity of the
Radon p.m. ‘s m,,mé M, P and the equation

g =1int {f, teC(X), £zgt
to get the following more géneral version of (b):
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(18) Let m  be a = -additive Borel p.m. on X such that
m (£) = [y m(£)P(dm) holds for each fe C(X).
Then
m,(g) = [y m(g)P(dm) for each bounded semicontinuous

function g:X—> R.

Now, the set of 8ll ge B(X) for which the relation holds is &
linear subspace closed under the sequential bounded convergeun-
ce, and includes the indicator functions of closed (open) sets,
hence all of B(X).

To prove (¢) assume first that b(P) = m, for some m 6 M
and consider a non-decreasing sequence {Kn} of compact sets such
that m (K ) *1. It follows from (b) that

m (K,) = [ m(K )P(dm), ne¥
and hence m(Kn)1‘1 almost surely on M w.r.t. P, Take € > O,
Applying Egoroff s theorem we obtain a set T ¢ J3(M) such that
P(T)>1 ~& and m(K )¢ 1 uniformly for mé T. Thus, the smet T
is tight and the measuwre P t-Radon.

Oa the other hand, oenmider a t-Radon p.m. P. Using the
¢ -additivity argument in the seme way as in the proof of (b)
one proves that the linesr funetional

t —» [, m(£)P(dm) (from C(X) to R)
satisfies the requirements of Daniell s theorem (see (6], p.66).
Hence, there is a regular ¥ -additive Borel p.m. m,  on X such
that
(19)  m (£) = [, m(£)P(dm) holds for f€C(X).
We prove that m, is a Radon p.m. . To this end take € > O and
a tight set T ¢ /(M) such that P(T)>1 - € . The tightness of T
implies that there is a compact set KCX such that m(K)>1 - ¢
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for each m¢?. It follows from (19) and (18) that
my (X-K) = [y m(X-K)P(dm)&2 5.

Thus, m, is a regular Borel p.m. such that
sup {no(K), KcX, K a compact seti = 1
and therefore a Radon p.m.

Now, as the set M is convex and closed in M(t,X) we sim-
ply epply the separation theorem ([2}, p. 452) to verify that
m,& M. Finally, it follows from (19) and (&) that b(mo) = P,

Q.E.D.

It 18 very simple, now, to summarize our preceding results
to get the following representation theorem for a metrizable

space:

Theorem 8. (Compare with Theorem 1 in [12).) Let X be a
metrizable space and M ¢ M(t,1,X) a nonempty closed convex set.
Then

(a) ex(M) is & nonempty G, set in M such that UsTF ex(M)
(the closed convex hull in M(%t,1,X))

(b)  for each re M there is & t-Radon p.m. P on M such
that

(R) P.(ex(M)) =1 and r(g) = fll m(g)P.(dm), g6 B(X).
Horeover, if the set M is such that (S) in Theorem 6 holds for
some compact simplex S, then

(c) for each r € M there is a unique Radon p.m. Pr on M
satisfying requirements (R) and

(d) the map r—> P, from M into EX(M) established by (c)
is continuous if ex(S) is & closed set and it is Borel measur-

able if X is a separable space,

Proof. (a) follows immediately from Theorem 6 and 2. As
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far as (b),(0),(d) are concerned, let us remark first that the
set M c M(t,1,X) inherits its metrizability (separability) from
the space X, see Theorem 13 in [11] (Theorem 11.2 in [7], p. 49).
Thus, it follows from (17) and the fact that D(X) = .ﬁo(x) that
we may apply Theorems6, 3 and 7 to get a verification of (b).
Obviously, (o) and (d) are simple consequences to Theorems 6
and 5. Q.E.D.
The representation (R) in Theorem 8 suggests to consider
the veotor space TN(t,M) endowed with the B(X)-topology of set

wise convergence on the G-algebra 53(X). Recall that the local-
1y convex B(X)=-topology is the topology which makes the set of
functionals m — m(g), g € B(X) to coincide with the space of all
B(X)-continuous functionals on M(t,X) (see [21, p. 453-456).
Let EB’bA denote the closed convex hull of a get A in 7Yt,X) en-
dowed with the B(X)-topology while &6 A continues to denote the
closed convex hull w,r.t. the weak topology of M(t,X).

Theorem 9. Let X be a metrizable topological space and
M c M($,1,X) a convex set which is weakly closed. Then M is

B(X)-closed and Sopex(M) = M.

This is an immediate consequence of Theorem 8 (a),(b) and
of the separation theorem applied to the set T ex(M) in the
B(X)~-topologized space M(t,X).

4, BErgodioc and invariant measures. Let X be a topological

space, J & family of continuous maps T:X —» X, Denote by I(J”)
the set of all J -invariant Radon p.m.s on X, by E(T) the set
of al1 ergodic elements of I(J ). Recall that a p.m. .m is §'~in-

variant if
0(?"'B) = m(B) for BeB(X) and T ¢ T
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and that a T-invariant p.m. = is ergodie if
a(T"'BaB) =0, ® ¢ F=> u(B) = 0 or 1, Be B(X).

Theorem 10. (See also [3] and [12].) Let X be u metris-
able space, 7' a set of continuous maps P:X —» X, Then E(7T)
is a Gy set in I(7) and to each rcI(J’) there is a unique
t-Radon v.m. P_ on I(7’) such that

(20)  (E(T)) =1, x(8) = Sy pm(a)ar,, geB(D).

Moreover,

I(T)+ A=>B(T)4¢, & E(T) = I(T)
and assuning that X is a separable space, then the map r —»Pr
established by (20) is Borel measurable.

Proof. It is easy to see that I(J) is a closed convex

set in M(%,1,X) and hence a fair gset aceording to Theorem 6.
To see that it is a strongly fair set we shall verify condition
(S) of the latter theorem. Define m? ¢ C¥(X) for me¢ C¥(X) and
*TecT by

aT(f) = m(fe ™), £eC(X).
Consider a compact convex set (see (14) and (15))

S={meY:mT =m, Te T}c C¥X),
the set for which

(21) HI(T)) = 1(M(£,1,X))n8

holds according to (17). To see that S is a simplex, consider
the convex cone generated by S, i.e.
Y =« {meC*X)tmz0, o = m for T 6 T} ,
and show that it is a sublattice of the vector lattice C¥(X).
Indeed, having m,n¢S, T6€ T and 0£f¢e C(X) we may write by
3.6.6 Corollary in [81, p. 62 that
(mvn)T(f) > supim(fye T) + n(f,01T), 0k{,, e c(x),

- 87 -



£, + £, = f% = (mvn)(1).

Thus, (mvn)TZmvn and since (mvn)T(1) = myn(1) for the oor-
stant function 1 we conclude that (mvn)T = mvn. Hence, the
set S is a simplex and set I(J’) strongly fair by (21) and The-
orem 6.

The reast of our assertion immediately follows from Theorem
2 and Theorem 8, since ex(I(3’ )) = E(J’) by Proposition 10.4 in
{71, p. 81. Q.E.D.
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