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EQUIVALENCE OF K-IRREDUCIBILITY CONCEPTS
Ivo MAREK and Kaiel ZITNY

Dedicated to Prof. Dr. F.L. BAUER Dr.h.c. on the occasion
of the 60th anniversary of his birth.

Abatract: The equivalence of various concepts of irredu-
¢ibilI¥y of positive operators in partially ordered Banach aspa-
ces introducod by G. Frobenius (Fr), H. Geiringer (Ge), Konig
(Ko), H.H. Schaefer (Sc), I, Sawashima (Sa), J,S. Vandergraft
(VS). V.Ya. Stecenko (St} and I. Marek and K. Zitny (MZ) is ana-
lyzed. All the concepts considered are equivalent if the dimen-
sion of the spaces under consideratiion is at least two. In one-
dimensional spacea these concepts split into two classes - the
oriterion bei a classification of the zero map as reducible
((HZ),(Sa),(Sg§) or irreducible ((¥r),(Ge),(Ko), (St) (vs)),
respectively.

Key words: Normal generating ocone, positive operator
irrediolBITIty ' '

Classification: Primary 47A99
Secondary 15448, 46440

l. Introduction. As well knocwn, the concept of irreduci-
bility of a matrix has been originated by G. Probenius in the
fundamental paper [2]. The role of irreducibility and its re-
lationship to the coucept of full indecomposability of a mat-
rix are elucidated in the paper of H. Schneider [10], where
the epproaches of G. Probenius, D. Konig and A.A. Markov to
the theory of matrices with nonnegative real entries are com-.
pared, Schneider also gives & deep anaslysis of the concepts
mentioned above and presents new proofs of some irreducibili-
ty and full indecomposability results. His main tool is the
(elementary) graph theory leading to final definitive results
in a very natural way,

- 61 -



The situation is rather different if one considers irre-
dueidbility concepts of cone preserving maps that in gemeral
have no direct relations to the "standard®™ order in the appro-
priate spaces, in particular, such maps cannot be represented
by matrices with nonnegative real entries.

The concept of irreducibility of a matrix with nonnegati-
ve reals has been generalized in many directions by many aut-
hors. This is not the case of the concept of full indecomposa-
bility, however. The reason for this may be connected with the
fact that the concept of full indecomposability of a matrix
is equivalent to a property which has essentially a finite di-
mentsional character, whilst the generalized irreducibility
concepts are dimension independent.

In this paper we are going to study several concepts of
irreducibility. Our goal is that we show that all these con-
cepts are equivaient if the dimension of the space under con-
sideration is at least two. In the one~dimensional case these
concepts split into two groups. The first group contains tho-
se concepts which admit the zero map to be irreducible, the

second group conversely does treat the zero map as reducible.

2., Definitions and notation. Let Y be a real Banach spa-
ce generated by a closed normal come K [51, i.e, let (1)-(vi)
hold, where (1) K + KcK, (11) eKCK for seR) = {beR':
:b2 0%, (111) EKn(-K) = {03, (iv) ¥ = K (here K denotes the
norm closure of K), (v) Y =K -~ K, (vi) there is a beRl,
b40, such that ix + yi Z bl x|\ whenever x,ycK.

Let Y' be the dual space of Y. We denote by K  the dusl
cone of K defined as k' =4y'e Y ': <{x,y"> 2 0 for all xeK3}.

(We write {x,y " in place of y (x).) We assume that K has a
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nonempty dual interior Y K = {xeKilx,x> *+0 for all x’ e
€K', x4 0}. A linesr form x ¢ K’ is called striotly positi-
ve, if (x,x">% 0 whenever xcK, x 0.
Let B(Y) denote the space of bounded lineer operutors on
Y. We call Te B(Y) K-positive, or shortly positive, if TKcCK.
A suboone PCK is called face of K [12], 1f x€F implies
that y e whenever x - y €K. We denote by !x the set defined

as P, = {ycK:iax - yeK for some asnl}. Obviously F, is a fa-
ce. An element eeK is called order unit of K, if for every
xeK, x40, there is a positive number a = a(x), such that
a(x)e - x€K, i.e. P, = K. %

Let TGB(Y), then there exists the limit x}ilwll'rkl =
= r(T) and 1t is called gpectral radius of T.

To & given operator (matrix) TsB(Y), T = (tjk)' ok =
= 1,2,..., We associate an oriented graph G = (V,H) (graph of
the matrix T) as follcwss Every index j e N = (1,2,...) is a
vertex, i.e. an element of V and any couple (j,k) forms an ed-
ge, 1i.e. an element of H if and only if tjk#o.

As usual, a sequence of edges {(d,k,).(k1.12)....,(kp,3p)},
P = 1,2,... 15 celled a path from (j,ky) to (k,,jp). A graph
G is called sirongly connected if for every two vertices a,beV
there is a path hgH connecting & and b,

3. K-irreducibility. A K-positive operator T eB(Y) is
called K-irreducible, or more precisely (xx)-K-irreducible,
where the bracket containsthe symbol of the corresponding con-
cept, if T has the following property:

(Sa) (I. Sawashima [8]). Por every couple x¢ K, x#0,
x’e K°, x40, there is a positive integer P = p(x,x’) such
that (?Px,x"> % 0.



(Sc) {H.H. Schaefer [9]). For every x&K, x40 and each
Ae R’, A> r(T), the vector y = P(AI-7)""z belongs to k4,

Let @(A) -x‘%‘ athk be & power series such that a & 31,
ey 70 for k&1, end whose radius of convergence R(g)>r(T).

(MZ) Por every x€K, x+$0, the vector y -g;(!!)xexd.

(St) (V.Ya. Stecenko [11)). Let a6R', a>r(?), uek, u0,
The relation au - Tu€K impliesg that ueKd.

{V8) 7Por every xs K, x #0, the relation l‘xa!x implies
that P_nK%4g.

It should be noticed that the definition (VS) is a modifi-
ed version of original definition given by J.S. Vandergraft
[12]). The reason for this modification is a dimensionality as-
pect. If the cone K contains an order unit, then (VS) is equi-
valent to the original Vandergraft’s definition [12):

(JV) Por every xg K, x$0, the relation TxeF, implies
that !x = Ko

Ir particular, (VS) is equivalent to (JV) if dim X<+ O ,

4. Equivalence of the concepts (Sa),(Sc),(M2).

(8a) &= (Sc)
For x¢K, x40, x’e k', x 40, a>r(T) we have that

L4 - w -l ’,
(ral - D7 xx V= 07 T, 2K (1,2
and the equivalence of (Sa) and (Sc¢) easily follows.
More generally,
(sa) &= (M2) )
4 w L4
because {@(Mx,x )= h%dak (mkx'x P
In particular, if ¢(a) = a(1 - a)'1. lal<1, we get (Sc)
.\

as a gpecial case of (MZ).
We also see that the ~oro operator T = O cannot be K-irre-

- 64 -



ducible for any of the concepts (Sa),(Sc) and (MZ).

5. The equivalence of (St) and (VS). First, let T be (St)-

K-irreducible. Let O%x6K be such that '.l‘xa!z. We deduce that
for some aSR1, a>0, ax - TxeK. By (St) we conclude that
xst. and thus (VS) holds.

Conversely, let T be (V3)-K-irreducible. If for some aé& R1,
8>0, ax - TxeK, x+0, then by (VS) there is a ye P nK%, It
follows that x€ K% and hence (St) holds.

It is easy to see thet the zero operator in ¥, dim ¥ = 1,
is (St)-K-irreducible and also {VS)-K-irreducible as well., We
return to this question egain in connection with the irreduci-
bility concepts in the sense of Probenius and Gelringer.

6. Equivalence of the concepts of irreducibility for Y
with dim Y2 . In this section #e show that sll the

five K-irreducibility concepts shown in Section 3 are equive~
lent if dim Yz 2. It is enough to show that

(Sa)e=> (St).

first, let T be (Sa)-K-irreducible and let au - TugK,
usK, u$0, where a6R’, a>r(T). Let x’¢ K*, x 40, Then

{u, x> 2 3'1( Tu,x >Ze..Z ek (Tkx,x'> .
By (Se), there is a p = p(u,x’) such that {TPu,x") % 0. Since
x”e K’ 1s arbitrary, we conclude that ue kS, Thus, T is (St)-
K-irreducible,

Conversely, let T be (St)-K-irreducible, FEviderntly, T=#0
(here the hypothesis dim YZ 2 is needed). If Tx = O for all
x6K, then we can take yeK, y¢Kd, such that y - Ty = y€K,

a contradiction.



Let us agsume that T is not (Sa‘-K-irreducible and, under
this assumption, let us distinguish two cases:

a) there is an x;e K’, x°'¢0, such that (Tx,x;)- 0 for
all xeK,

b) Por every x'€ XK*, x 0, there is ar x€K such that
(Tx,x" > #0.

In case a) we choose xoeK such that 'l‘x°4= O, in case b)

let x 6 K, x,+0 and such that <™z ,x > =0 for all p = 1,2,...

Let
o 1
X
u=_ 3 —— T7x
®=1 (1 + 0T ) °?
then ue K and
oo 1

™ Tk+1

D W—
=1 e )E
It follows that
(1 +021)u - Tu = x
and u$ 0 whilst

0,z ) = ! (t®x ,x’>=0
) = ’ = »
B 2= o4 (s nE o et o

a contradiction to the fact that ueKd. This completes the proof.
Summarizing, we state

Theorenm 1. The concept of K-irreducibility (Sa),(Se),(MZ),
(St) and (VS) are all equivalent in spaces ¥ with dim YZ2,

Moreover, the concepts of groups (I) and (II) are equiva-
lent respectively also, if dim Y = 1 but each concert of (I)
is not equivalent to any of the concepts of (II) for the case
dim Y = 1, where (I) denotes the collection of (Sa),(Sc) and
(MZ), whilst (II) contains the concepts (5t) and (VS), respect-
ively.

- 66 -



T. Irreducibility in the spaces of sequences. In the pre~

vious sections we considered arbitrary Banach spaces generated
by quite general cones, In such situation there is no hope o?f
being able to relate the concepts of irreducibility givem by
G, Frobenius, H. Geiringer and D. Konig to the generalized ir-
reducibility concepts. To be able to do so and without restric-
ting ourselves tv the finite dimensional situation, we conaider
the following type of Banach spaces generated by a natural ge-
neralization of the come R} ={x€R™x = (§q5000y §p)» §420,
J=1,...,n%

Let Y be any Banach space of sequences of real numbers
having the following properties:

(r) The finitely generated vectors are dense in Y, 1i,e.
tor every xe&Y, x = (§44 §,40..) we have that k{il\x - xka- o,
where X, = (€ 4,000, Exr0reee), ?ke R‘; e,

(b) ¥Y=K-K, where K ={xe¥ix = ( §q, §ppeee)s F120s
k=1,2,...73

(c) for every x€Y, x = (?1, fosees) the vector Ix| =
= (\§l1 ,lgl2 ,ese) belongs to Y.

For the sake of simplicity we are going to consider opera~
tors T represented in a fixed (say standard) basis by infinite
matrices T = (tjk)' Jok = 1,2,... .

A linear operator Pe B(Y) is called permutation operator,

w g
Z_;pak" &='~4 ij-1and

12 P = (pjk), where Py € 10,1%, w21 .

e B(Y).
We now present an infinite-dimensional analogue of the ir-
reducibility concepts of G. Frobenius [2] #hd H, Geiringer [3].
An operator T € B(Y) is called irreducible, or more preci-
sely (xx)-irreducible, where (xx)- denotes the symbol of the
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corresponding concept, if the following holds, respectively:
(Pr) There is no permutation operator P such that the
operator T = (th). Jok = 1,2,... has the form
T = PIyP,

T T
Ty = ( 1 3)
Q T,
with T,€ B(Y,), T,6B(Y,), Y,CY, ¥,CY, min (dim Y,, dim Y,)Z 1
and P* = (pjk), Pk = Pgyr dok = 1,25000

where

(Ge) There is no decomposition of the set N = 1,2,...}%
into two parts Ny and N, such that N = Ny U N,, N, nX, =
= ¢ and tye = 0 for § e)(‘2 and k € N and where T = (%t
Ik = 1,2,000 &

(Ko) The graph of the operator Te B(Y) is strongly con-

nected.

Remark, In general Tp does not belong to B(Y).

8. Equivalence of the irreducibility concepts (Pr) and (Ge).
Let us assume first that there are nonempty sets .N'1 and ./('2

such thet N, uJ/'2 = N, N nJV‘2 = § and Yy = 0 for le Sy
and k € V.
We let pjx_ =1 for J = 1,... and 13 e v‘{; = {11.00-
eees Rgyeol¥s further Py = 0 tor k € Ny, k % 1’.3 and for k 6
© Nj. Similerly, Bjy =1 for j e N and £y 6 Ny, pyy = 0
for k 6 N5, k #la and k € Ny, Then for K, we have
(1‘)' [2°] o0 o0

ik nsz'\ I;%'t Pyr¥rePrs = »-2‘4 tﬁaspk!o
where id € JY1 and for k ¢ X,

F 2%
tgk) - tﬂjfk' 23 e Ny £y e X,
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According to our hypothesis, t,& = O, In octher words,

ko

T T
1y = (1) - (G; Ts)
2
and we see that T does not fulfil the condition (Fr). Thus

(Pr)-irreducibility implies the (Ge)-irreducibility.

Conversely, let T not satisfy condition (Fr), i.e. let
T T
- * . 1 3y . (F))
T, = PIP ( ) (tjk
o T,
where T1eB(Y1) and TzeB(Yz), Y1c Y, YQ.CY and P = (pjk) is a
permitation operator. We let Ny = {4y ..., £y...}, where Ij
is such that py, =1, § € J/; and N, = N\ KN,. Then for
x Y
£q e Ny and A, € Ky we have that
0 ® )
] - = = P f(F)p x> P t(,) =
qup ta4 A4 rlq T8 YLP T rlq l‘lp
- t(8),
th 0.
Thus, (Ge)-irreducibility implies the (Fr)-irreducibility. The
proof is complete,

9. The equivalence of (Fr) and (St). In this section, when

discussing the irreducibility concepts (St),(Sa) etc., we always
agsume that K is specified as in Section 7. In this case Kd =
={xekix = (§q, §pre-)’t §420, k = 1,2,0..8,

Let us assume that there is a permutation operator P such
that
T T
PTR® = ( | 3)
Q '.t.‘2

with T,€ B(Y), T,€B(Y;), Yjc ¥, Y,c Y. We let

X m (§qaeees §go0eee)y X = (0, 2000, §yqsees) With §3>0
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J=1,.00,8, §%,1>0, end §},Z0, k>N, Then {Tpx,x ") = 0.
Let u = PX. Then for some a€R’, a>r(T), au - TuegK and uéxkd,
We conclude that non (Fr) implies non (St), that is (St)-irregu-
06ibility implies the (Pr)-irreducitility.

Let T be (Fr)-irreducible. We let x = ( §qseces §500sece)
with §j>0 for J4&n and define

T
e = T+ D, x, = (§qoeeey §1000000) 7
Purthermore, let
T T
- ( 1 3)
T4 '1‘2
where T, 6 B(Y,), T, eB(Yz), Y.cy, ¥,cv.
Ve see that the (n+1)-st component of x; is positive, other-
wise from
™nE
11 = ( - + xo
T4x
it would follow that 14 = O and that would coniradict the hy-
pothesis. Hence, generally,

- (§$k+1)"“' ‘(1k+1) (k+‘l)"”,g(k+1)

T
e ’ ptk+1 ntk2reee)

with g(kﬂ ) 0,J% n+k+1 and T, 2 0 £> n+k+1, It follows that for
every vector x 6K, x40, there is a power Py = pj(x) such that

(T x)d>0. Thus,
1

2 1 rext,

&0 (r(T) + 1)

Therefore, every O%yeK, for which ay - Ty = xeK, a>r(T), x40,
must be in Kd and followingly, T is (St)-irreducible. The proof

is complete.

10. The equivelence of (Ko) end (Ge)., Let T B(Y) be not

(Ko)=irreducible. We let the vertices into two disjoint classes
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as follows: j end k belong to the same class N; if and only
if there is a path in the operator graph G connecting j and k
and X, = ¥\ XN,, where X = {1,2,...}. This means that any
k e .)(‘2 cannot be connected with any j € .

We see that T cannot be (Ge)-irreducible. Thus non (Ko)
implies non (Ge), that is (Ge) implies (Ko).

If T is pot (Ge)-irreducible and G is the graph of T, then
G cannot be strongly comnected.

The strong connectivity of G would imply the existence of
e chain (§,ky),(ky,kp) ey (kpyk) such that 4y, b ...tkpﬁ

%0, that is J and k belong both either to Jf1 or .A",‘,. This
contradiction shows the implication non (Ge) = non (Ko),

that is (Ko) implies (Ge) and this completes the proof.
We conclude by stating

Theorem 2. The irreducitility concepts (Pr), (Ge) and (Ko)
are equivalent. Moreover, each of these conceptis is equivalent
to each of the concepts of group (II) and consequently, to each

of the concepts of group (I) if dim YZ2.

References

[1] BRUALDI R.A., PARTER S,V., SCHNEIDER H.: The diagonal equi~
valence of a nonnegative matrix to e stochastic
matrix, J. Math. Anal. Appl. 16(1966), 31-50.

[2] PROBENIUS G.: Uber Matrizen aus nicht negativen Elementen,
Sitzungsberichte Preuss. Akad, Wiss. Berlin 1912,
456-47T7,

[3] GEIRINGER H.: On the solution of systems of linear equati-
ons by certain iterative methods, Reissner Anni-
versary Volume, J.W. Edwards, Ann Arbor, Michigan
1949.

-7 -



14

(5]

[6]

n

18]

[9l

[10]}

[11)

[12]

[131

KSNIG D.: Theorie der endlichen und unendlichen Graphen,
Chelsea Publ, Co., New York 1950.

KREIN M.G., RUTMAN M.A,: Linear operators leaving a cone
invarient in a Banach space, Uspekhi Mat. Nauk III,
N 1(1948), 3-95 (in Ruseian). English translation
Amer. Math., Soc. Translations 26(1950), 128 pp.

MARCUS M., MINC H.: A Survey of Matrix Theory and Matrix
Inequalities, Allyn and Bacon, Boston 19643 the
Russian translation, Nauka Moscow 1972.

MAREK I.: Frobenius theory of positive operators, Compari-
son theorems and eapplications, SIAM J. Appl. Math,
19(1970), 607-628.

SAWASHIMA I.: Spectral properties of some positive opera-
toras, Natur. Sci. Rep. Ochanomizu Univ. 15(1964),
55-64‘

SCHAEFER H.H.: Spectral properties of positive linear
transformations, Pacif. J. Kath. 10(1960), 1009-1019.

SCHNEIDER H.: The concepts of irreducibility and full im-
decomposability of a matrix in the works of Frobe-
nius, Konig and Markov, Lin. Algebra and Its Appli-
cations 18(1977), 139-162.

STECENKC V.Ya.: Criteria of irrsducibility of linear opers~
tors, Uspekxhi Mat. Nauk XXI,Nr. 5(131)(1966), 265~
266 (Russian).

VANDERGRAFT J.S.: Spectral properties of matrices which ha~
ve invariant cones, SIAM J. Appl. Math. 16(1968),
1208-1222,

VARGA R.S.: Matrix Iterative Analysis, Prentice Hall Inc.
Englewood Cliffs, New Jersey, 1962.

I. Marek: Katedra numerické matemetiky na Matematicko-fyzikdln{
fakult® Univerzity Karlovy, Malostranské ndm. 25, 11800 Prahm 1,
Czechoslovakia

K. Zitng: Ustav termomechaniky CSAV, Pudkinovo ném. 9, 16000
Preha 6, Czechoslovakia

(Oblatum 14,12, 1984)

-T2 -



		webmaster@dml.cz
	2012-04-28T09:53:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




