
Commentationes Mathematicae Universitatis Carolinae

Jindřich Bečvář
A note on H-high subgroups of abelian groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 55--59

Persistent URL: http://dml.cz/dmlcz/106278

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106278
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UN.VERSITATIS CAROLINAE 

25,1 (1984) 

A NOTE ON H-HIGH SUBGROUPS OF ABELIAN GROUPS 
Jindrich BECVAft 

Abstract: The purpose of this note i s to determine a l l 
subgroups H of an abelian group G such that each H-high sub­
group of G i s an intersection of P-isotype subgroups of G. 

Key words: H-high subgroups; P - i sotype , isotype and pu­
re subgroups* 

Classif ication: 20K99 

All groups in this paper are abelian, we shall follow the 

notation and terminology of [41 . Let F be the set of a l l pri­

mes and f a (o£p)p € |p a sequence, where each oC i s either an 

ordinal or the symbol oo which i s considered to be larger than 

any ordinal. A subgroup A of a group G i s said to be P - i s o t y ­

pe in G i f p̂ A » An p̂ G for every prime p and for every ordinal 

/3 4 06_>• About P-isotype subgroups see C3l (references). 

Since (#^G) m p°̂ (G ) for each ordinal 06 and each prime p, we 

shal l write only p**G . I t I s natural to use the symbol p^CpJ 

for (p^GHp]. 

The concept of an H-high subgroup was introduced into the 

structure theory of abelian groups by J.M. Irwin and E.A. Wal­

ker (see [ 5 1 , [ 6 ] ) . If H i s a subgroup of a group G then each 

H-high subgroup of G i s neat in G though not necessarily pure 

in G. The subgroup H i s said to be a center of purity in G 

(J.D. Reid LlOl) i f eaoh H-high subgroup of G i s pure in G. 
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Tke question of determining a l l centers of purity (J.M. Irwin f 

B.A. Walter 15],16]) was s e t t l ed by R.S. Pieroe [9] (see also 

[1C])# The c lass of a l l groups in which erery subgroup i s a cen­

ter of purity ( i . e . in which each neat subgroup i s pure) was 

desoribed by C. Megibben [8] (see also [ 1 0 ] , f i l l ) . The resu l t s 

of R.S. Pieroe and C. Megibben were generalized by V.S. Roch-

l ina [ 1 1 ] , W. J. Keane [7] and J. Becvar U ] in three d i f f e ­

rent direct ions. In the paper [1] there are determined a l l cen­

ters of T- lsotypness , i . e . such subgroups H of G for that each 

H-high subgroup of G i s V-isotype in G. 

This note i s a supplement to my paper [ 1 ] f i t s purpose i s 

to determine a l l subgroups H of an arbitrary group such that 

a l l H-high subgroups are intersections of f - i sotype subgroups. 

The proof of the main theorem essent ia l ly u t i l i z e s the result 

froii 123. 

A description of such subgroups H of a group G for that 

eaoh H-high subgroup of G i s an intersection of P- i so type sub­

groups of G i s contained already in the following lemma (compa­

re with Proposition 2.1 [ 1 0 ] , Lemma [ 9 ] , Lemma 2 [ 1 1 ] , Lemma £1] 

and Lemma 2.5 [7]K 

Lemma; Let G be a group, H a subgroup of G and P • 

• (okp^pejp* 2hen there i s an H-high subgroup of G that i s not 

an intersect ion of P- i so type subgroups of G i f and only i f the­

re are a prime p f an ordinal ft < u and elements O^hCHtp ] , 

g 6p?G such that <g-h f prHHp}>n H » 0. 

Proofs Let M be an H-high subgroup of G that i s not an in ­

tersect ion of P - isotype subgroups of G. By Theorem 1 [ 2 ] , the­

re are a pri*e p f an ordinal (3 < cC and an element g € p % \ M 

euoh that pg€M and p%[p]£M. Since pg£MnpG « pM, there i s 

56 -



an element n^e M such that pg » P*^. Hence g-s^S G[p] « 

-* M [p]©H[pj , . >e, g ^ « 1*2+** where a^elirpJ and O+heHfpJ. 

Now<g-hf p f e f p ] > n H 9 M n 5 » 0. 

Conversely suppose that there are a prime p, an ordinal 

fo< oc and elements 0+ h £ HCp], g € p̂ G suoh that 

<g-h, pr?GCp3>,^H - 0. Let M he an H-high subgroup of G eoa-

taining <g-h, p/*G[p]> . Since g£p /*a - \ l l - pg « p(g-h) € * an* 

pPG[pl£M, we have that M i s not an intersect ion of P-iaoty--

pe subgroups of G by Theorem 1 C23. 

Theorem: Let G be a group, H a subgroup of G and 

V • (°-rp)pgip» The following are equivalenti 

( i ) Each H-high subgroup of G i s an intersect ion of P -

isotype subgroups of G. 

( i i ) For each prime p, each ordinal /3 < cC and each e l e ­

ments O ^ h s H p ] , gCp^G, i t i s <g-h f p^GCpl>n H+0 . 

( i i i ) For each prime pf one of the following two condit i ­

ons holds: 

(a) Hp « 0; 

(b) for each ordinal A < cC_ either p^G,. is elementary and 
A P P 

p Q /Hop^G i s torsion or Hop^G 4 0 . 

Proof: The assertions ( i ) and ( i i ) are equivalent by the 

previous lemma. 

( i i ) —-> ( i i i ) . Suppose H 4 0 for some prime p and l e t 

ft< ctfp be an ordinal such that Hnp^G » 0. If O-^heHrpD 

and gGp^G then<g-h, p^ GCpl>0 H4-0 by ( i i ) . Hence n(g-h) • 

+ x « h4=0, where n i s an integer, xsp^GCpl and h e H. Conse­

quently png « pheH and p G/HAp^G i s a torsion group. If 

gG p^G then png 6 Hr>p^ G « 0; i f ptn then ng + x » h £ H n 

n p^G -= 0 - a contradiction, hence (p,n) «• 1 and o(g) - p. 
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( i i i ) ~~> ( i i ) . Let p he a prime, / 3 < o 6 p a n ordinal, 

04-hcHCpl and g£p/*G. With respect to ( i i i ) we can suppose 

that p^G i s elementary and * ° /Hnp^G i s torsion (otherwi-

00 we are through). I f g i e of i n f i n i t e order then there i e an 

integer n such that ngeH and hence O^pn(g-h) e <g-h f pl^Gfp]>n 

n H . I f g i s of f i n i t e order then write g • g^ + gg, where 

pg-i - 0 f o(gg) - m and (mfp) - 1. Iowf 0 4(m(g1+g2-h) - mg1) € 

G <g -h f p^GCp]>oH. 

Corollarys Let G he a group and H a subgroup of G. Each 

H-high subgroup of G i s an intersect ion of i so type subgroups 

of G i f and only i f for each prime p one of the following con­

dit ions hoIds i 

(i) Hp - 0, 

(ii) for each ordinal /3 either P^G^ ie elementary and 

p a / H A p ^ G ie torsion or H n p ^ G + 0 . 

Corollarys Let H be a subgroup of a group G. Each H-high 

subgroup of G is an intersection of pure subgroups of G if and 

only if one of the following two conditions holdss 

(i) /H is torsion and for each prime pf either H « 0 

or Ho P^r, • 0 Implies p n + »« • 0 for any natural number nf 

(ii) for each prime pf either H - 0 or Hnp^G^+O for 

any natural number n. 

Remarks fhe class of all groups G in which each H-high 

subgroup is an intersection of P-isotype subgroups of G for 

each subgroup H of G obviously coincides with the class of all 

groups in which each neat subgroup is an intersection of P-

Isotype subgroups of G. This class has been described in L'33f 

where it is also shown that this class coincides also with the 

- 58 -



c lass of a l l groupo in whioh eaoh neat subgroup io P-iootype 

(ooe also Propooition CI]) . 
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