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A NOTE ON H-HIGH SUBGROUPS OF ABELIAN GROUPS
Jindiich BECVAR

Abgtract: The purpose of this note is to determine all
subgroups H of an abelian group G such that each H~high sub-
group of G is an intersection of [ -isotype subgroupsof G,
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All groups in this psper are abelian, we shall follow the
notation and terminology of [4]. Let IP be the set of all pri-
mes and [ = (°‘p)pe p & sequence, where each ocp is either an
ordinal or the symbol co which is considered to be larger than
any ordinal. A subgroup A of a group G is said to be [ -isoty-
pe in G if pﬂA = AN pPG for every prime p and for every ordinal
B = G pe About {"-isotype subgroups see [3] (references).
Since (f‘(!)p - p"‘(Gp) for each ordinal o¢ and each prime p, we
shall write only p"‘cp. It is natural to use the symbol p™G[pJ
tor (p“G)lpl.

The concept of an H-high subgroup was introduced into the
structure theory of abelian groups by J.M. Irwin and E.A, Wal-
ker (see [51,[6]1). If H is a subgroup of a group G then each
H-high subgroup of G is neat in G though not necessarily pure
in G, The subgroup H is said to be & center of purity in G
(J.D. Reid [10]) if eaoch H-high subgroup of G is pure in G.
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The question of determining all centere of purity (J.M. Irwin,
E.A. Walker [51,106]) was settled by R.S. Pierce [9] (smee also
[1C)). The class of all groups in which every subgroup is a cen-
ter of purity (i.e. in which each neat subgroup is pure) was
desoribed by C. Megibben [8] (see also [10],[11]}). The resulis
of R.S. Pierce and C., Megibben were generalized by V.S. Roch-
lina [11]), W. J. Keane [7] and J. Bedvd¥ [1) in three diffe-
rent directions. In the paper [1] there are determined ell cen-
ters of [M-isotypness, i.e. such subgroups H of G for that each
H-high subgroup of G is [M=isotype in G.

This note is a supplement to my paper [1], its purpose is
to determine all subgroups H of an arbifrary group such that
all H-high subgroups are intersections of ["-isotype subgroups.
The proof of the main theorem essentially utilizes the result
trom [2],

A description of such subgroups H of a group G for that
each H-high subgroup of G is an intersection of ["-isotype sub-
groups of G is contained already in the following lemma (compa-
re with Propositior 2.1 [10), Lemma [9], Lemma 2 [11), Lemma [1]
and Lemma 2,5 [7)).

Lemma: Let G be a group, H a subgroup of G and "=
= (dbp)peP‘ Then there is an H-high subgroup of G that is not
an intersection of ["-isotype subgroups of G if and only if the-
re ure a prime p, an ordinal 3 < ecp and elements O+h€Hlp],

g ¢ pPG such that {g~-h, pPGIp)>N H = O.

Proof: Let M be an H-high subgroup of G that is not an in-
tersection of [ -isotype subgroups of G. By Theorem 1 [2], the-
re are a prime p, an ordinal (3< ocp and an element g¢ pﬂG\M
such that pg€ M and pﬁG[p]E M. Since pg € MNpG = pM, there is
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en element m, € M such that pg = pm;. Hence g-m, 6 Glp] =
= M{p1® H[pl, ..e g-m; = m,+h, where m, < M[p] and O} hcH[p].
Now {g-h, pPG[p1> NHSKNH = O,

Conversely suppose that there are a prime p, an ordimal
f< o<, and elements O hc H(p), &< pPG such that
(g=h, pRG[P1> NH = 0. Let M be an H-high subgroup of G eom-
taining <{g-h, pPG[p]l) . Since gc pP 3 M, pg = p(g-h) ¢ X and
pBGIPp1CM, we have that M is not en intersection of M-isoty-

pe subgroups of G by Theorem 1 [2].

Theorem: Let G be a group, H a subgroup of G and
M= <°‘p)pelP . The following are equivalent:

(1) Each H-high subgroup of G is an intersection of "=~
isotype subgroups of G.

(i1) For each prime p, each ordinal f3 < o(.p and each ele-
ments O+ heHIlpl, gep PG, it 1s <g-h, pAG[p1> N H+0.

(111) Por each prime p, one of the following iwo conditi-
ons holds:

(a) Hp = O3
(v) r%r each ordinal (< o  either pP G, 1a elementary and

P C/gpPG 1s torsion or Hr\pﬁGp*m

Proof: The assertions (i) and (ii) are equivalent by the
previous lemma,

(i1) —> (iii). Suppose Hp*o for some prime p and let
ff< «, be an ordinal such that Hn pﬂ‘ep = 0. It 0+heK([p)
and g¢ p/°G then {g-h, pP GIp1>N H#$0 by (ii). Hence n(g-h) +
+ x = 40, where n is an integer, x€ p#Glpl and he H. Conse-
quently png = pheH and P ®/Hnp/*G is & torsion group. If
SGpﬂ'Gp then pnge Hnp? Gp = 0; if pln then ng + x = heH N
N pHGp = C - & contradiction, hence (p,n) = 1 and o(g) = p.
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(1i1) —> (11). Let p be @ prime, 3 < o¢p, an ordinal,
O+hc H[pl end ge p/? G, With respect to (1ii) we can suppose
that p# G, 1s elementary snd »” G/HnpR G 1s torsion (otherwi-
se we are through)., If g is of infinite order then there is an
integer n such that ng€ H and hence 04pn(g~h) € {g-h, p/3G[pI>n
NHe If g 18 of finite order then write g = g *+ &, where
P&y = 0, o(g;) = m end (m,p) = 1. Now, OF(m(gy+g,-h) ~ mg,) €
e {g-h, p”Glpl>NnE.

Corollary: Let G be & group and H a subgroup of G. Each
H~high subgroup of G is an intersection of isotype subgroups
of G 1f and only if for each prime p one of the following con-
ditions holds:

(1) H, =0,

(11) for each ordinal (3 either pﬁGp is elementary and
P G/an/sG is torsiom or anf"‘Gp*O.

Corollary: Let H be a subgroup of @ group G. Each H-high
subgroup of G is an intersection of pure subgroups of G if and
only if one of the following two conditions kolds:

(1) %/H 1s torsion and for each prime P, elther B =0
or HN pnGp = 0 implies pn"'le = 0 for any natural number nj

(i1) for each prime p, either Hp = 0 or annGp#rO for
any natural number n.

Remark: The class of all groups G in which each H~high
subgroup 1is en intersection of [’ -isotype subgroups of G for
each sabgroup H of G obviously coincides with the class of all
groups in which each neat subgroup is an intersection of M-
‘isotype subgroups of G. This class has been described in [31,
where it is also shown that this class coincides also with the
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class of all groups in which each neat subgroup is [ -isotype
(see also Proposition [1]).
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