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THE LATTICE OF R-SUBALGEBRAS OF A BOUNDED DISTRIBUTIVE
LATTICE
L. VRANCKEN-MAWET

Abstract: Using Priestley’s duality, we investigate the
lattice §RZL5 of the {0,1j-sublattices of a given bounded

distributive lattice L which are ¢losed under relative comp-
plementation. We characterize those bounded distributive lat-
tices L such that SR(L) is semimodular, modular, distributive

or Booleen.

Key words: Distributive lattice - Relative complementati-
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Classification: 06D05.

Introduction. In his study on Boolean lattices R-genera-

ted by distributive lattices, Gratrer considers particular
10,1} -sublattices of a given bounded distributive lattice, na-
mely those which are closed under relative complementation.
The purpose of this paper is to study these sublattices, which
we call R-subalgebras. It turns out that Priestley’ s duality
is a well-adapted tool to achieve this aim.

In Section 1, we introduce the concept of congruence on
a Priestley space, which is dusl to that of R-subalgebra; the
lettice of all R-subalgebras of a bounded distributive lattice
is dually isomorphic to the lattice Con(X) of all congruences
on the dual X of L.



Section 2 is devoted to the study of Con(X). In pertfeular
we characterize those Priestley spaces whose rtongruence lattice
is semi-moduler, modular or distributive respectively. We trens-
late these results in terms of R-subalgebras in Section 3.

We adopt standard set theoretic 'notations. Let us however
recsll some of them. For a set X, we denote by |X| its cardinal
and by Eq(X) its equivalence lattice. If 8¢ Eq(x), xeX and
ECX, we write x° for the ©-class of x and E® = Uix®| x cE};

E is ©-saturated if E° = E. If X = (X,£) is a poset, p<3q meanrs
that q covers p and p ll Q means that p and g are not comparable.
We say that EcX is convex if x<2<y and x,yeE imply that 2cE.
An order connected component (o.c.c.) of X is a subset E of X
which is minimal with respect to the property of being both inhe
creasing and decreasing. Finelly, th? n-element chain is denoted

by n.

1. A_Duaslity for R-subalgebres of a bounded distributive

lattice

1.1. Definition. Let D denote the category of bounded dis-

tributive lattices and {0, 1} ~homomorphisms. If L&é® and A is a
{0,1t-sublattice of L, then A is said to be en R-subalgebra of L
if it is closed under relative complementation (when the latter
is defined). Other ways of defining R-subalgebras are given in
[4]7. The set of all R-subalgebras of a lattice L in D , ordered
by inclusion, is an algebraic lattice, the study of which is the
purpose of the present paper. We denote it by 9R(L)'

In [6], H.A. Priestley establishes a duality between D and
the category P of Priestley (i.e. compact totslly order discon-

nected) spaces and order-preserving continuous maps. The functors



$:D—~—>P end (": P—D which realize the duality are des-
cribed as follows: if L €D , (L) is the ordered set of all
prime ideals of L, suitably topologized , whereas, for X ¢ P,
(r(X) is the lattice of all clopen order-ideals of X. If f is
a morphism in D (resp. P ), its duel map is defined by RP(f} =
= £~ (resp. 0'(£) = £7'). We refer to [7) for the fundemental
facts on Priestley s duality but we usually follow the notati-
ons of [2].

1.2. Definition. Let X e P ., Suppose (X’, z°) is & topolo-
gicel space and or is an onto continuous map X — X’. An order
<’ on X° is said to be compatible with ¢/ and & if X° =
= (X’, %", <’) is in P and if or is order-preserving (hence a
morphism in P ).

1.3, Lemma. Let L e D and A € ¥(L). Denote by X =
= (X, ,<) the dual of A and by s the duel map of the inclusi-

on map A —> L. Then « is the least order on X which is compati-
ble with v gnd & .

Proof. Suppose £’/ is an order on X which is compatible
with ¥ and & . Denote by A’ the dusl lattice of (X, =, <£”),
considered as a {0,1}-sublattice of L. By [7), both A end A° R~
generate the Boolean algebra whose dual is (X, 7 ). Since A is
closed under relative complementation, it follows from [ 3], p.
89,that A conteins A°. In other words, (F(X,z, ¢’) 2
2 0((X,T,£"), which implies that < is contained in <’,

By 1.3, the dual of an R-subalgebra A of a lettice L ¢ P
is determined by the canonical epimorphism x : FL) — P(A).
Therefore, the general concept of separating set [1] mey be ad-
ventageously replaced by the simpler one of congruence.



1.4. Definition. Let X e TP and @ e Eq(X). Then © dJdeserves
the name of congruence if there exists a topology =’ and an order
47 on X such that
i) the natural mesp r:X —> X/@ 4is continuous, and

11) <“ is compatible with =’ end .
We denote oy Con(X) the set of all congruences on X.Obvious-

1y, @ (the identity relation) and L (the universal relation)are
always congruences,Since the intersection of any subfamily of
Con(X) is again a congruence,Con(X) is a complete lattice,but it
need not be a sublattice of Eq(X).It is also worth to note that,
i @€Con(X),the topology ¥'of the definition is neecessarily the
quotient topology,which we shall denote by % «Noreover, among all
orders £’ compatible with ¥ and & ,there alweys exists a least one,
that we shall denote by ‘6 (it suffices to consider the R-subal-

gebra of ((X) generated by (((X/6,t’,£‘)) and to apply 1.3). We
shall now describe <4 .,

1.5. Notetion. Let X e P and © € Eq(X). We denote by

0(X,6 ) the set of all clopen order-ideals of X which sre O -sa-
turated end we define on X/6 a quasi-order <4 as follows:

xeée ye if, for ell Ue 0'(X,0), Usy implies Usx.

1.6. Lemma. Let X € P and © € Eq(X). The following asser-

tions sre eguivalent:

(1) 6 & Con(X);

(11) < is entis tric;

(111) #5 1is the leost order compatible with 7, and x;

(iv) if x 8 y fails, then x and y cen be sepersted by some mem-

ber of ('(X,0 ).

Proof. (1) => (ii). Let =’ be an order on X/6 which is
compatible with Tg and or. If 194&' ye , there exists
VeO(X/8,7,,<")) with Vav® ana V2% . 1 U = & ~'(v), then
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e

U e0(X,0), U2y and U$x, which shows that x® %5 y° . Conse-

quently, ée is contsined in <’ and therefore is antisymmeixic.

(11) =» (1i1). It is clear that =, 18 an order on X/6
which is compatible with 2, and & . The proof of (1) => (ii)
shows that it is the least one.

Finally, (i1ii) == (1) and (i1) <= (iv) are trivial.

1.7, Theorem. If L €D and if X is its dual space, then .
there exists a cenonical dus) isomorphism fp(L) —> Con(X). In
particuler, Con(X) is dually algebraic.

Proof. We mey assume that L = ((X). Let us define
h:Con(X} — EfR(L) by h(8) = 0(X,8). Clearly, h is one-tp~one
and order-preserving (see 1.6(1iv)).

Let now Ae ¥ (L), Define 6 to be the kernel of P(id) ,
where id is the inclusion mep A —> L. In other words, x 8 y if
and only if Uax <= U3y for all UeA. We wish to show that
h(6) = A, It is clear that Ach(O ). Let Ush(B). For each
x€U end y¢ U, there exists by 1.6(iv) either U__€ A such that

xy
nyax and ny$y, or nysA such that vv:y and nyix. Ify
is fixed, the sets ny and -ny(xeu) form an open covering of

U which, by compactness, has a finite subcover. This gives rise
to elements UycA, VycA such that UQU,U-VyG-{ ¥ . Hence,
-U = u{v’n- uy)yw . Again by compactness, it follows that U
is the intersection of finitely many Uyu-vy. Therefore, U is
in the Booleen algebra R-genersted by A. Since U € 0'(X), UsA
by [33.

The map A > 6 1is obviously order-preserving and the proof

is over.



2. The congruence lattice of a Prigstley spece

2.1. Notation. Let X e P . If EcX, we denote by O(E)
the equivalence on X generated hy EXE snd by ¢ (E) the equi-
valence O(E) UuO(-E). If L = {p,q} we write O(p.q) instead of
e (fp,q}).

2.2. Lemma, I1f XcP gnd EcX, then 6(E)€ Con(X) if and
only if F is closed end convex.

Froof. Any congruence cless is closed and convex. Hence
the condition is necessary. Suppo3e now that (x,y) ¢ 6(E) where
E 18 closcd and convex. Tu find U € 8(X, & ) separating x and y,
it suffices to diatinguish the possible pocitions of x and y re-
latively to E.

2.3, Theorem, If X € P , then Con(X) is_atomistic, Its
atoms_are the equivalences 9(p,g; where pliq or p<q.

Proof. Let us first show that zny closed and convex subset
E of X which is not reduced tc a singleten conteins a peir fp,qt
wherea r 4q or p<q. This ie clesr if E is not a chain. If E is
2 chain. it is a Boolean chain, in which jumps p<q exist in a-
bendance ([5])-

To prove atomisticity noce that one has @=VI(O(E)]| E is
a A -clessy for each £ & Con/i), Hence it remains tc prove that,
if E is closed and convex, 3 (3) =V40 {p.q)cCon(X)} p,qsEf.
Let $ ¢ Con/X) be such thai = ©(p,g) for all p,q€ = with
@ (p,q)& Con(X}e If F ©O(a), there cxiat x, y ‘n E fcr whizh
x § y fails. Consequently, X and ¥ >z be s:parated by soze
Ue U(X,§ ). If p is meximel ir U~ L ~nj v ninimal in -UA g,
ther p.qe & and ©(p,q'c Con(X) wherze @(p.y)2 § , 8 contra-~

‘letion,



2.4, Theorem. If X € P , then Con(X) is dually atomistic.
Its dual atoms ere the eguivalences $(U), where U & 0(X) -
- 44 ,x}.

Proof. It is clear that @ (U)e Con(X) if =2nd only if
Ue ¢(X) (use 1.6(iv). It suffices now to show that, if
B & Con(X), then 8 =AL{ P (V)| U e 0'(X,6)}%. If U € O(X,6 ), then
8 £ §(U). Conversely, if ® = $(U) for each U € 0(X,8), and
if x$ y, then x O y by 1.6(iv) . Hence § « @ | which complétes

the proof.

The following result shows that the semimodularity of Con(X)
depends only on the order on X and not on its topology. (A latti-
ce L is called semimodular if and only if it satisfies the follow-
ing condition for all a,beL:aAnb<a => b<avb.)

2.5. Theorem. If X € P , then Con(X) is semimodular if end
only if either
(1) X is order-isomorphic to en ordinal sum A® C@® A  , where
A and A" are (possibly empty) entichains and C is a bounded chain,

or

i1) X = MinXu MexX gnd either |X-MinX|<£1 or |X-MexXlg 1.

Proof. Suppose first that Con(X) is semimodular. We proceed
in four steps.

a) There cennot exist in X elements x,y,z,t with x<y, z<t,
x|t end y) z (otherwise @ (x,t) > 8 (y,z) A8 (x,t) = and @ (y,=)
v 8(x,t) >0 ([x,ylu iz})> O(y,z)). In particular, there oxists
at most one o.c.c. which is not reduced to a singleton. Let us
denote it by Xo.

b) Ir p,qexo and piq, then for each xeX,, x>p (resp.
x<p) implies x>q (resp. x<q). Suppose on the contrary that,



for some reX,, one has r>p and r$q (which implies r il q). We
distinguish three possibilities.

If[p) A Lq)#@, it contains some minimal element t, Neces-
sarily, either rfit or r<t. In the first cese, we have
9(lp,t]1) v O (q,r) >8([p,tlulg,t]) > ([p,t]). In the second
case, we have © ([q,t)) v O (p,q) > 9(Iq,tJu r,t)) > ([q,t]).
Both inequalities contradict the fact that Con(X) is semimodular.

If [p)Nniq) = ¥ and (rln(ql#@, choose some maximal element
t in (r1n(qlJ. If t<p, then @ ([t,q)) v O(q,r)> B([t,q] vIt,p])
>0 ([t,ql). If t{ p, then B(I[t,r]1)Vv O(p,q)> O([t,rIv[p,r])>
> 8(Lt,r]). Here again this is not possible because of the semi-
modularity of Con(X).

It remains to consider the case where [p)n[q) = & and
(rln(ql = @. Since q€ X,» there exists in MinX v MaxX some ele--
ment t$q which is compareble with q, say q<t. The existence of
the elements p,r,q,t contradicts a).

¢) Suppose now Xz MinX uMexX. The only o.c.c. of X are §#
end X itself, Otherwise choose x<y< 2z and some t not belonging
to the same o.c.c. as x. Then O(x,t)v & (z,t)> O ([x,y)] uit})>
> 0(x,t), which is not possible.

Moreover, C = X-(MinXuv MexX) is a chain. Indeed if p, q are
non comperable elements of C, let t (resp. u) be minimal (resp.
maximal) in [p)ALq) (resp. (pln (ql) (these sets are not empty
by b)). Then O (p,t)V8 (p,u) > 8 ({p,q,t}) > O(p,t) and this e-
gein is not possible.

As a consequence, X is of the type i) as required.

d) If X = MinXu MaxX, we have to prove that |X-MinX|<£1 eor
| Xx-MaxX) < 1. Suppose on the contrary that there exist distinct
elements x,y in MinX-MaxX end z,t in MaxX-MinX. By b), we may as-
sume that x<z, x<t, y<z and y<t. Then O(x,z)v @ (y,t)>

-8 -



> Bi(x,yz)} > €(x,2) whieh is absurd.

Assume now that X satisfies either i) or ii). We have to
prove that if ¢,0 & ConiX), then AO< O implieshpr €@ 6.
It is not difficult to show that the third isomorphism theorem
holds in P eand we may assume $A @ =ci . We shall prove the
following stronger result: if ¢ € Con(X) and if 6 is an atom
in Con(X), then the supremum QAQG of $ end € in Eq(X) is
a congruence. To achieve this result, let us suppose 8 = € (p,q)
where pll q or p<q. We first show that it is not possible to ha-

ve (%) ;:Q<y‘f

< q‘i for some y€ X (here, < is written instead
of < ). The proof is carried on ab absurdo.

a) Suppose first that X satisfies i). If plq, then
ip,q¥ < MinX or {p,q} S MaxX, sey {p,q} S MinX. It results from
(X) that pQ v y"s MinX, Let t be the least element of X-MinX.
Then yd> < t? , and there exists V& O(X,$) such that Vay end
V $ t. Moreover, since p®< yé , there exists W € 0'(X,d ) such
thet Wap end Wpy. If U = V-W, then U e 0(X,d ), Uy end Upp,
which contradicts pq’ < yé .

If p<q and pe MinX, then q = t and we have seen that
PQ < yo < t§ is not possible. Hence we may assume that peX -

- (MinXy MaxX). In the same way, we may assume that q6X -
- (MinX uMaxX)., Since X-(MinXuMaxX) is a chain, y is comparab-
le with p end q and () implies p<y<q, which contradicts p<q.

b) Suppoee now that X satisfies (1i). Obviously, (%) pre-
vents X from being en antichain. By (ii1), we may assume that
X-MaxX = im} for some m. Let us show that %< yQ implies x m
(end this contradicts (X )). If not, then either x®< n? or
x*m. The first possibility cannot occur because, if U e 0(X)

end U3 m, then -U € 0(X). Hence there exists V& 0(X,d ) such



that Vom end Vi x. Stnce x¥< y¥, there also exists
We 0(X,$) such that W x gnd WPy. If U = Vu -V, then
Ue 0(X,0), Usy and U$px, which contradicts < yé .

We are now in a position to prove that éveq 8(p,q) €
€ Con(X). Let c = & '\/eqe(p,q) end suppose that x o y fails.
To separste x and y by some member of ('(X,x) we have to con-
sider the various positions of x and y relative to p and q. As
an example, let us assume XQ = pé , yé > pQ end yQ* qi’ .

ir p'p4'- y‘le and q‘b$ ¥y, there exists U e 0(X,®) such that
Uoy, U$x end {p,q}¢ -U, which implies U € 0'(X,x). If p¥< y?
(same argument if q& < y‘b ), then yi’d'- p? ena y*qq’ (otherwi~
se pQ< y¢< q“? ) and we may argue as above.

Theorem 2,5 ensbles us to characterize those X ¢ P for
which Con(X) is geometric (i.e. Con(X) is semimoduler, complete,

atomistic and ell atoms of Con(X) are compact).

2.6. Theorem. Let X € P « Then Con(X) is_geometric if and

only if it has one of the forms (i) or (ii) of 2.9 and moreover,
MinXu MaxX is_finite.

Proof. Suppose Con(X) is geometric. By 2.5, it remains to
prove that MinXou MaxX i3 finite. Assume on the contrary that
MinX is infinite. If MinX is not closed, let p& MinX and let q
be the least element of X-MinX. Then ©(p,q) is not compact sin-
ce 8(p,q)<2V'T, where T = {8 (x,y) | x,y¢ MinX} whereas ©(p,q)#
£ T  for any finite subset T’ of T.

If MinX is closed and thus compact, there exists p € MinX
such that {p} is rnot open. Let q be an element of MinX- {p}. If
T = {0 (x,y)) x,ye MinX- {p}} , we conciude as above.

Conversely, if X satisfies i) (case ii) is trivial) of 2.5

snd Min XuMax X is finite, then each atom is compact. Tc show
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this, let T be a set of utoms in Con(X) such that &(p,q) & T.
We consider two possibilities.

a) If {r,q3<(t] where t is the least element of X-MinX,
then @(p,q) = Vvi® (x,y)eTiix,yt S (t]¢ .

b) If {p,q¥< C where C is the Boolean chain described in
2.5 1), then necessarily ©O(p,q)& T because (pl€0(X,0 ) for any
0€ T - £6(p,q)}.

We now study the modularity of Con(X). We first need to ob-
serve that 6 € Con(X) is dually compact if and only if X/€ is
finite (use Priestley’s duality).

2.7. Theorem. Let X €P . If X is not the ordinal sum of
two 2-element antichains, then the following assertions sre e¢-
quivalent:

(1) Con(X) is modular;

(11) Con(X) is dually semimodular;

(111) Con(X) is_dually geometric;

(iv) if ¢ and ¢ sgre dual stoms of Con(X), then dAy< ¢ (and
Say < vy )

(v)' either {X|<3 or X is isomorphic to & subspace of A@ C® A’

where A and A’ are two-element snticheins and C is s bounded

chain.

Proof. The implications (i) = (ii) = (iii) =5 (iv) are
trivial. Let us prove (iv) ~» (v), We proceed in three steps, as-
suming that (liv) holds.

a) As an ordered set, C = X-(MinXy MaxX) is a chain. If not,
let x,y ¢ C be such that x i y. Choose x,€ MinX N (x1 end y & MexX N
Nly). There exists U,V € 0{X) such that V2{x ,y}, -v2ix,y.t,
Uoix,,yt, -Vaix,x}, U2ix,x}% end -U24y,y }. Hence
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QM A BT < (P (VIAB(D))VvO(V)< $(V),which is sbsurd by (iv).

) If IX\>3, then (MinX|42 (and in the same way, [MaxX | £
£ 2 . Otherwise, let x,¥,% 6 MinX and t¢X-{x,¥,2z}. There exists
U,¥ € 0(X) such that U2ix,y% and -U2{z,t},V2<{x,2} and -V >
24{y,t1. A contradiction arises as in a).

¢) If |[X1>3 and plq, then for each x€X,x>p (resp. x<
<p) implies x> q (resp. x<gq). Taking into account that any ele-
ment of X dominates a minimal element and is dominated by a maxi-
mal one, we may dssume by a) that {p,q}< MinX or {p,q} < MaxX,
sey {p,q} S MinX. Suppose that x>p and x3}q (which implies xliq).
Ohoose ye X~-{p,q,x%. If y4x, there exist U,V & O(X) such that
v24{p,xt,~-U24q,y}, V2 {p,q} and -V 2{x,y} and we conclude as
in a), The same argument holds if x4y (interchanging x and y).

Let us now prove that (v)=>(1). If I1X|£3, then clearly
Con(X) is modular and we mey assume that X = A® C® A  where A
and A’ are two-element antichains and C is & bounded chain
(with least element ¢ and greatest element d). The congruence
lattice of C, is dually isomorphic to the lattice of all {0,1}-
sublattices of (F(C), hence it is Boolean., The congruence lat-
tice of (o) (and similarly that of [4)) is isomorphic with Mg,
the five-elements modular non distributive lattice, It remains
to observe that the map 6 (8] (o1 6] qs er[d)) is an iso-
rorphimm from Con(X) onto Con((e]xCon(C)x Con([d)). This is a
routine exercise.

Remark., If X is the ordinal sum of two 2-element anti-
chains, it is easy to msee that (ii),(1i1) and (iv) hold but
Con(X) is not modular. Indeed, let t 3% (resp. X1,¥y) be the
minimal (resp. maximal) elements of X. We have

W = 8 (x5,77) A8 (3,,¥7)2 B (x,,xy)
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while

B(y,s7,) < 6(ix,,¥,,7}) < 0(xy,57) v O (y5,57) = 10

2.8, Theorem, Let X ¢ P . The following assertions are
equivalent:
i) Con(X) is Boolean;
11i) Con(X) is distributives
i111) Con(X) is uniqueiy complemented;
iv) either |X|£2 or X is a Boolean chain,

Proof. It is clear that (1)=> (ii) and (1) => (1ii) end 1t
has been said in the proof of 2.7 that (iv)=>(1).

Let us prove (i1) =>(iv), By 2.7, either |X|< 3 or X is iso-~
morphic to a subspace of A@ C @ A’ where A,A' are two-element
entichains and C is a bounded chain, It is not difficult to check
that, 1f |X| = 3, thenX must be a three-element chein, We may
therefore suppose that |{X|>3. In this case, X has a least ele-
ment (and for a similar reason a greatest one).

Indeed, suppose that p,qe MinX, Let re X-{p,q}. There exist

U,V € ("(X) such that U=aq, -U2{p,r}, Vop and -V 2{q,r}. Then
(P(MIAB(p,q)) V(P (U)AB(p,q)) = w and ($ (V) v P (U))A6(p,q)=
= 8(p,q), which is impossible since Con(X) 1is distributive.

We now prove that (1ii) = (iv). Pirst observe that, if U €
e 0(X) - {#t and a e MaxX-U, then 6 (~U uial) is a complement
of 6(U). By (1ii), any Ue 0(X) - {#,X} has a greatest element
and, for dual reasons, ~U has a least element. Now let x, y be
non-comparable elements of X, There exist U,V € 0°(X) such that
xeU-V and ye U~V, We claim that {U,V} is a partition of X, If
not, then for instance UuV#IX and UuV has a greatest element,
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which implies USCV or VcU and this is impossible. Let p be
the least element of U and q the least element of V. To end
the proof, we shall show that X = {£p,ql. If not, let
reX-{p,q} and suppose for instance that p £ r. There exist
U’,v e 0(X) such that U 24{p,q}, U $ r, V' 2 {q,rf and
V5 p. Then ~(U'NV’) has a least element and this implies
U’cv  or Ve U’, a contradiction.

3. The lattice of R-subalgebras of u bounded distributive
lattice
In this section, we dualize the results of the previous sec-

tion to obtain results on EfR(L), for Le D . We omit the

proofs which are straightforward,

3.1. Theorem. If L €B , ¥ (L) is algebraic, atomistic
end dually atomistic.

3.2. Theorem. If L D , then ¥, (L) is dually semimodu-

lar if and only if either
(1) L is isomorphic to en ordinal sum L°@® C @ L, where L” and

o0s8sibly empt. relative omplemented distributiv

tices and C is a chain or
(11) g1l prime jdeals of L gre maximal, except possibly one,

or
(11°) a1l prime ideals of L gre minimal, except possibly one.

Let L7 be the 7-element lattice of figure 1.
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Figure 1

Since the dual of L7 is the ordinal sum ef two 2-elemant

entichaing, Theorem 2 7 duslizes as follows.

3.3, Theorem. If L € D , then ¥,(L) is dusdly geometric
if and only if L is igomorphic to (B® 1)xB  or to B® C® B’,
where B and B are finjte Boolean algebras and C is a not empty

chain.

3.4. Theorem. Let L € D.
a) If L is not isomorphic to L7, then the following sssertions
ere equivalent:
(1)  FR(L) is moduler:
(11) ":fR(L) is semimodular;
(111) ‘?R(L) is geometric;
(iv) 4n ‘-YR(L), the supremum of two atoms covers each of these
atoms;
(v) L is isomorphic to a sublattice of 520 Ce2
chein C), or to 23 or to 2x3.

b) If L is isomorphic to L., then (ii),(1ii) and (iv) hold bwut
Eyﬂ(L) is not modular.

3.5. Theorem., Let L € D , Then the following are equiva-
lent:
(1) ?R(L) is Boolesn;

2 (for. some

- 15 =



(11)  9(L) is distributive;
(111) FR(L) is uniquely complemented;
(iv) L is a chein or a four-element Boolean algebra.

We conclude by two corollaries of the above results which
shed some light on the problem of the characterization of
?R(L). We are concerned here with the abstract characterizati-
on, but there is no difficulty to adept our results to have

information on the concrete characterization problem.

3.6. Theorem. Let S e D . Then S is isomorphic to

qR(L) for some L €D if end only 1f S is a complete atomig
Boolean lattice.

Proof. If ‘!R(L) is distributive, then it is Booleen, com-
plete and atomic by 3.1 and 3.5.

Conversely, let C be a set such that S is isomorphic to
the power set of C. Consider any linear ordering on C and defi-
ne L to be C with supplementary bounds O and 1. Then YR(L) is
isomorphic to S.

3.7. Theorem. Let S be a modular lattice, Then S is iso-
morphic to (L) for some L if end only if S is of one of the
forms B, Bx l(s, or Bxlsx ll5, where B is a complete atomic Boo-
lean lattice,

Proof. Theorem 3.4 (and an easy computation) shows that
the condition is necessary.

To prove that it is sufficient, let C be a bounded chain,
given by 3.6, such that ‘fR(G) is isomorphic to B. Disregarding
the case where B is trivial, we choose L to be C (resp.

ce 32, gza cC® gz) and it follows that c-"R(L) is isomorphic
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to B (resp. Bxls, Bxlsr. ls).

(8D

21

31

[4)

5]

Lel
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