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COMMENTATIONfcS MATHEMATICAE UNIVERSITATiS CAROLINAE 

25,1 (1984) 

THE LATTICE OF R-SUBALGEBRAS OF A BOUNDED DISTRIBUTIVE 
LATTICE 

L. VRANCKEN-MAWET 

Abstract: Using Priestley's duality, we investigate tbm 
lattice SR(L) of the -[0,1$-8UDlattlees of a given bounded 

distributive lattice L which are closed under relative comp-
plementation. We characterize those bounded distributive lat­
tices L such that SR(L) is semimodular, modular, distributive 

or Boolean., 

Key words; Distributive lattice - Relative complementati 
on - Priestley's duality - Congruences on partially ordered 
spaces. 

Classification: 06DO5. 

Introduction. In his study on Boolean lattices R-genera~ 

ted by distributive lattices, Gratter considers particular 

^O^J-sublattices of a given bounded distributive lattice, na­

mely those which are closed under relative complementation* 

The purpose of this paper is to study these sublattices, which 

we call R-subalgebras. It turns out that Priestley's duality 

is a well-adapted tool to achieve this alnu 

In Section 1, we introduce the concept of congruence on 

a Priestley space, which is dual to that of R-subalgebraj the 

lattice of all R-subalgebras of a bounded distributive lattice 

is dually isomorphic to the lattice Con(X) of all congruences 

on the dual X of L. 



Section 2 is devoted to th.e &tшţy of GJCЛCX). ІЗ* ÇÄГІlcular 

we cћaracteгize those Priestley spaces whoэe congruence lattice 

is semi-modular, mođular or diзtributive respectively. We trens-

late these results ln terms of R-aubölgebras in Section 3* 

We adopt standard set theoretic notations. Let us however 

recall some of them. For set X, we denote by |XІ its cardinal 

and Ъy Eq(X) its equivalence lattice. If ö€Eq(x), X G X nd 

Ecx, we write x G for the -class of x nd E » Ufxö I x €E$; 

E is -вatttтвtвÖ if E -= E. If X =- (X,á£ ) is a poset, pЧq means 

that q coverв p and p H q means that p nd q re not compaг ble. 

We say that Ecx is convex if x-éztćy nd x,ycE imply that sьбE. 

An oгder connected component (o.c.c.) of X is a subset E of X 

which is minimal with respect to the property of Ъeing Ъoth ţfc* 

creasing and decre sing. Finally, the n-element chain is denoted 

by n. 

1. A Puality for R-зubalяebr s of a Ъounded dlзtributive 

lattice 

1»1» Definition. Let D denote the category of Ъoundeđ đis-

tributive latticeз вnű {0,1|-homomorphisms. If L & and A is a 

-tO, 1î-sublattice of L, then A is said to Ъe an R-subalgebra of L 

if it is closed under relative complement tion (when the l tter 

is defineđ). Other w ys of defining R-sub lgeЪr s re given in 

ÍAl. The set of all R-suЪ lgeЪr s of l ttice L in Ђ , ordered 

by incluвion, is an algeЪraiß, lattice, the study of which is the 

purpose of the present paper. We denote it Ъy ífR(L). 

In [63, H.A. Priestley establishea a duality Ъetween Ђ and 

the category 1P of Priestley (i.e. compact totally order discon--

nected) sp ces nd order-preserving continuous maps. The functors 
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3*: J) —*"P and (T: IP—*>J) which realize the duality are des­

cribed as follows: If L e i , J*(L) is the ordered set of all 

prime ideals of L, suitably topologized , whereas, for X £ IP, 

(T(X) is the lattice of all clopen order-ideals of X. If f is 

a moronism in D (resp. "P ), its dual map is defined by (Pit) = 

= f"1 (reap. (7(f) * f* 1). We refer to £71 for the fundamental 

facts on Priestley's duality but we usually follow the notati­

ons of £ 2J • 

<£•<-• Definition. Let X e f , Suppose (X', T ' ) is a topolo­

gical space and JT Is an onto continuous map X --> X#. An order 

6' on X# is said to be compatible with x,' and JT if X# = 

a (X#, #', £.') is in F and if ur is order-preserving (hence a 

morphism in ff ). 

1 »3» Lemma. Let L e 2) and A e SfR(L). Denote by X = 

= (X,"C , -£ ) the dual of A and by JT the dual map of the inclusi­

on map A —• L. Then .6 is the least order on X which is compati­

ble with * and st . 

Proof. Suppose -£-/ is an order on X which is compatible 

with f and of . Denote by A" the dual lattice of (X, ir, £'), 

considered as a {0,li-sublattice of L. By C7J, both A and A' R-

generate the Boolean algebra whose dual is (X,r). Since A is 

closed under relative complementation, it follows from £3], p. 

89,that A contains A'. In other words. tT(X, * , £') 3. 

2 (HCX, -c , £ ' ) , which implies that *. is contained in £' • 

By 1.3, the dual of an R-subalgebra A of a lattice Lei) 

is determined by the canonical epimorphism st : p(L) —->#*(A). 

Therefore, the general concept of separating set £11 may be ad­

vantageously replaced by the simpler one of congruence. 



1.4. Definition. Let X 6 IP and OeEq(X). Then Q dAeeiroes 

the name of congruence if there exists a topology is' and an order 

-£' on X such that 

i) the natural map sr :X —*• X/Q is continuous, and 

it) £.' is compatible with <*' and *r. 

We denote oy Con(X) the set of all congruences on X.Obvious­

ly, co (the identity relation) and t (the universal relation)are 

always congruences. Since the intersection of any subfamily of 

Con(X) is again a congruence,Con(X) is a complete lattice,hut it 

need not be a sublattice of Eq(X).It is also worth to note that, 

if OcCon(X),the topology *£'of the definition is necessarily the 

quotient topology,which we shall denote by x~ .Moreover, among all 

orders £'compatible with r'and flT ,there always exists a least one, 

that we shall denote by -£g (it suffices to oonsider the R-subal-

gebra of (T(X) generated by Ct(X/9t'C't-»')) and to apply 1.3). We 

shall now describe —Q . 

1»5. Notation* Let X & V and 9 e Eq(X). We denote by 

C(X,@ ) the set of all clopen order-ideals of X which are 0-sa-

turated and we define on X/0 a quasi-order £$ as follows: 

x e^ ey
e if, for all UsO /(X,G), Uay implies U^x. 

1•£• Lemma, x,et X € F and 9 e Eq(X). The following asser­

tions are equivalent: 

(i) G 6 Con(X); 

(ii) &Q is antisymmetric; 

(iii) *Q la the least order compatible with t^ and sr 5 

(iv) if x Q y fails* then x and y can be separated by some mem­

ber of <T(X,e ). 

Proof, (i) =it> (ii). Let -fa/ be an order on X/O which is 

compatible with XQ and tt . If x e + ' y ^ , there exists 

V e<7(X/8 , xQ ,£')) with V 9 v d and V i x e , If 0 - 3T ~1 (V) ,then 
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U 6 <7(X,e ), Uay and U4»x, which shows that %e 4>B y e . Conse­

quently, .̂g is contained in £' and therefore is ajati*ymm*tr:U. 

(ii) -^ (iii). It is clear that s-fc- is an order on X/6 

which is compatible with f^ and JT . The proof of (i) «=-=> (ii) 

shows that it is the least one. 

Finally, (iii) ~-.> (i) and (ii) <=- (iv) are trivial, 

*•?• Theorem. If L e l and if X is its dual space, then „ 

there exists a canonical dual isomorphism £PR(L) —» Con(X). In 

particular. Con(X) is dually algebraic. 

Proof. We may assume that L = 0"(X). Let us define 

h:Con(X) -> ^ R(L) by h(8 ) = (T(X,e ). Clearly, h is one-torone 

and order-preserving (see 1.6(iv)). 

Let now A e ffR(L). Define 9 to be the kernel of C?(id) , 

where id is the inclusion map A — > L. In other words, x 9 y if 

and only if Uax <s= Usy for all Vek. We wiah to ahow that 

h(9) * A. It is clear that A S h O ) . Let U € h ( 8 ) . For each 

x c U and y^ u» there exists by 1.6(iv) either U €A such that 
*y 

U a x and U -£y, or V 6 A auch that V my and V ^x. If y xy xy xy xy *y 

is fixed, the sets U and ~ v
x v (

x e U ) form an open covering of 

U which, by compactness, has a finite subcover. This gives rise 

to elements U cA, V cA such that U £ U v u - V c--ty} . Hence, 
y y y y 

-U = ViV^n- U J y ^ U . Again by compactness, it follows that U 
y y 

is the intersection of finitely many U u -V • Therefore, U is 
y y 

in the Boolean algebra R-generated Dy A. Since U 6 0r(X), U«A 

by U 3 . 

The map A H• 0 is obviously order-preserving and the proof 

is over. 

- 5 



2. The congruence lattice of a Prists Hey saace 

2«1* Notation. Let X 6 IP .If Ecr.X, we denote by 9{E) 

the equivalence on X generated by E .x£ and by ${E) the equi­

valence 0(E) uQ(-E). If h =-f p,q? we write 0(p,q) instead of 

e(-£p,qj). 

2.2. Lemma. If X <s P sad EgX, then 9(E)e Con(X) if and 

only_if E is closed and convex. 

Proof. Any congruence class is closed and convex* Hence 

the condition is necessary. Suppose now that (xfy) *) Q(E) where 

E is closed and convex. To find U 6 d(X, 6>) separating x and y, 

it suffices to distinguish the possible positions of x and y re­

latively to E. 

2.3» Theorem, If X € P f then Con(X) Is atomistic. Its 

atoms are the equivalences €Hp,q> where p 1 q or p«<q. 

Proof. Let us first show that any closed and convex subset 

E of X which is not reduced tc a singleton contains a pair [p,ql 

where r Sq or p-^q. This is clear if £ is not a chain. If E is 

a chain, it Is a Boolean chain, in which (1umps p-*q exist in a-

bv'ndance (151)* 

To prove atomisticity, note that one has ©=-VCG>(E) | £ is 

a 0 -class! for each Be ConCiO. Hence it remains tc prove that, 

if E is closed and convex, 9(E) *V\6 (p,q)cCon(X) ) p,qsEf. 

Let $ <? Con'X) be such that '& Z ©(p,Q/ for all p,qeS with 

©(p,q)6 Con(X). If $ 9(E) t there exist x, y in E for which 

x $ y fails. Consequently, x and y 2 ^ be s*p**rated by some 

fj 6 cT(X,i ). If p is maximal in U^ I- rnd y iLinimnl in -Un 2, 

tier. p,q«*L ond 0(pfq»6 Con(X) wh^rce 9(p...;)-£ <$ , a oomra-

'letton. 



2»4* Theorem. If X € P f then Con(X) is dually atomistic. 

Its dual atoms are the equivalences <J> (U)f where U 6 (T(X) -

Proof. It is clear that $(U)e Con(X) if and only if 

U e C(X) (use 1.6(iv). It suffices now to show that, if 

6 s Con(X), then 9 =-A< $ ( U ) | U 6 CT(X, 9 )}. If V e 0(Xf 6 ) , then 

9 .6t$(U). Conversely, if M $(U) for each U e CT(Xf9 ) f and 

if x $ y, then x 6 y by 1.6(iv) • Hence $ -* © , which completes 

the proof. 

The following result shows that the semimodularity of Con(X) 

depends only on the order on X and not on its topology. (A latti­

ce L is called aemimodular if and only if it satisfies the follow­

ing condition for all afb«sL:aAb-?a - ^ b ^ a y b . ) 

2»5« Theorem. I£ X € TP f then Con(X) is semimodular if and 

only if either 

(*) x Is order-isomorphic to an ordinal sum A © C ^ A' f where 

A and A* are (possibly empty) antichains and C is a bounded chain, 

or 

ii) X = MinXuMaxX and either jX-MlnXU 1 or jX-MaxXU 1. 

Proof. Suppose first that Con(X) is semimodular. We proceed 

in four steps. 

a) There cannot exist in X elements xfy,£,t with x<*ryf z<t, 

xl t and yj z (otherwise 0 (xft) > 0 (y,z) AQ(x,t) = co and Q (yfs) 

v 8(xft) ;> 0(Cxfyl o \z\) > 0(yf*)). In particular, there exists 

at most one o.c.c. which is not reduced to a singleton. Let us 

denote it by X . 

b) If p,q6X0 and p | qf then for each xgX 0, x>p (resp. 

x<p) Implies x^q (resp. x < q ) . Suppose on the contrary that, 



for some reXQ, one has r>p and r^q (which implijem rjq). We 

distinguish three possibilities. 

If C p ) ^ £q)4*0, it contains some minimal element t. Neces­

sarily, either rlt or r<t. In the first case, we have 

9(Cp,tl) v B (q,r) > O (Cp,t3 ufq,tJ) >Q(tp,t]). In the second 

case, we have © (rq,t]) v 9 (p>q) > 9(£qtt1 u Cr,t3 ) > 9 (£q»tJ). 

Both inequalities contradict the fact that Con(X) is semimodular. 

If £p)r\£q) = 0 and (r3n(ql4B0, choose sons maximal element 

t in (r3A(q]. If t<p, then 0 (£t,q3) V 6 (q,r)> 0 (Ct,qJ u £t,pJ)> 

>0(£t,qJ). If t|| p, then G(£ t , r . l ) v © (p,q) > 9 (£t,rJ u [pfrl) > 

> 9(tt,r]). Here again this is not possible because of the semi-

modularity of Con(X). 

It remains to consider the case where Ep)A [q) * 0 and 

(r3 n(q1 = 0. Since q£ X , there exists in MinX u MaxX some ele— 

ment t-̂ q which is comparable with q, say q<t. The existence of 

the elements p,r,q,t contradicts a). 

c) Suppose now X4MinXuMaxX. The only o.c.c. of X are 0 

and X itself. Otherwise choose %<y<% and some t not belonging 

to the same o.c.c. as x. Then G(x,t)v0(z,t)> 0 ( C x , y ) ] u { t } ) . > 

>9(x,t), which is not possible. 

Moreover, C = X-(MinXuMaxX) is a chain. Indeed if p, q are 

non comparable elements of C, let t (resp. u) be minimal (resp. 

maximal) in fp)n£q) (resp. (pln(qJ) (these sets are not empty 

by b)). Then 9(p,t)V0 (p,u) > 8 (4p,q,tj) > 9(p,t) and this a-

galn is not possible. 

As a consequence, X is of the type 1) as required* 

d) If X -» MinXuMaxX, we have to prove that IX-MinXl--- t or 

I X-MaxX) *--1 • Suppose on the contrary that there exist distinct 

elements x,y in MinX-MaxX and z,t in MaxX-MinX. By b), we may as­

sume that x< zf x< t, j< z and y<t. Then 0 (x,s) v 0 (y,t) > 
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> Qi(x9yz)\ > &{x,z) which is absurd. 

Assume now that X satisfies either i) or ii). We have to 

prove thst if $ ,0 e ConiX), then < $ A 0 ^ G implies $ A < M 6* 

It is not difficult to show that the third isomorphism theorem 

holds in V and we may assume <£A & « a . We shall prove the 

following stronger result: if $ € Con(X) and if 8 is an atom 

in Con(X), then the supremum <$ A 0 of <J> and 6 in Eq(X) is 

a congruence* To achieve this result, let us suppose 6 - 9 (p,q) 

where p II q or p-^q* We first show that it is not possible to ha­

ve (* ) p* < y^ < q for some y £ X (here, < is written Instead 

of <* ). The proof is carried on ab absurdo* 

a) Suppose first that X satisfies 1). If pflq, then 

ip,ql£MinX or ip,q^£MaxX, say -Lp,q$£MinX. it results from 

{%) that p^u y^£ MinX. Let t be the least element of X-MinX. 

Then y* < t* , and there exists V & 0{X, $ ) such that Ysy and 

V $ t. Moreover, since p* < y* , there exists W e C(X,$> ) such 

that lap and W^y. If U • V-W, then V e(T(X,$ ), Uay and U^p, 

which contradicts p$ < y* . 

If p-4q and pcMihX, then q » t and we have seen that 
&> & 6 

P < y < t is not possible. Hence we may assume that p ex -

- (MinXuMaxX). In the same way, we may assume that qfiX -

- (MinXuMaxX). Since X-(MinXuMaxX) is a chain, y is comparab­

le with p and q and (:# ) implies p<y<q, which contradicts p-<q. 

b) Suppose now that X satisfies (ii). Obviously, (;*) pre­

vents X from being an antichain. By (11), we may assume that 

X-MaxX - {m\ for some m. Let us show that x*< y* implies x m 

(and this contradicts (*)). If not, then either x^-< m* or 

x^m* The first possibility cannot occur because, if U e 0(X) 

and U ̂  m, then -U 6 (X(X). Hence there exists V6(J(X,| ) such 
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that V3m and Vi x. Since x$--r y , there also exists 

W e <T(X,$ ) such that W a x and W#y. If U « Vu-I, thsn 

U e CT(X,$ ), Us>y and U .$x, which contradicts x$-c y* . 

We are now in a position to prove that J v 8(p,q) 6 

€ Con(X). Let cc - $ v 8(p,q) and suppose that x oc y fails, eq 

To separate x and y by some member of Of(X,oc) we have to con­

sider the various positions of x and y relative to p and q. As 

an example, let us assume x =- p , y 4» p and y 4- q . 

If p*4 y* and q*^ y, there exists U 6 0'(X, $ ) such that 

Uay, U^x and 4p,q*£ -U, which implies U 6 (T(X,<x, ). If p*-< y $ 

(same argument if q* < y^ ), then y*-£ p^ and y-£q (otherwi­

se p^ < y < q* ) and we may argue as above. 

Theorem 2.5 enables us to characterise those X € P for 

which Con(X) is geometric (i.e. Con(X) is semimodular, complete, 

atomistic and all atoms of Con(X) are compact). 

2*6* Theorem. Let X 6 IP • Then Con(X) is geometric if and 

only if it has one of the forms (i) <>r (ii) of 2.5 and moreover. 

MinXu MaxX is finite. 

Proof. Suppose Con(X) is geometric. By 2.5, it remains to 

prove that MinXuMaxX i3 finite* Assume on the contrary that 

MinX is infinite. If MinX is not closed, let p 6 MinX and let q 

be the least element of X-MinX. Then 0(p,q) is not compact sin* 

ce 8(p,q)-£VT, where T = { 8 (x,y) \ x,ye MinX? whereas e(p,q)-£ 

4-T' for any finite subset T' of T. 

If MinX is closed and thus compact, there exists pcMinX 

such that -tp} is not open. Let q be an element of MinX--£pK If 

T s ̂ Q (x,y) ) x,yc MinX- I p H , we conclude as above. 

Conversely, if X satisfies i) (case ii) is trivial) of 2.5 

and Min XuMax X is finite, then each atom is compact. To show 
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this, let T be a set of atoms in Con(X) such that #(p,q) «-£ T. 

We consider two possibilities. 

a) If ip,q^£(t3 where t is the least element of X-MinX, 

then 0(p,qM V * 6 (x,y)GT Ux,y}£(tJl . 

b) If -tp,qic c where C is the Boolean chain described in 

2.5 i), then necessarily 6(p,q)eT because {pl€0(Xt6 ) for any 

e e l - ( 6 (P,q)$. 

We now study the modularity of Con(X). We first need to ob­

serve that O e Con(X) is dually compact if and only if X/B is 

finite (use Priestley's duality). 

2*7« Theorem. Let X e P • If X is not the ordinal sum of 

two 2-element antichains >. then the following assertions ere e-

quivalent; 

(i) Con(X) is modular; 

(ii) Con(X) Is dually semlmodular; 

(iii) Con(X) is dually geometric; 

(*v) 11 $ and y are dual atoms of Con(X), then $Af-^$ (and 

C|AY W V ); 

(v) * either 1 Xl ̂ 3 or X is Isomorphic to a sub space of A 0 C © k' 

where A and k' are two-element antlchalns and C is a bounded 

chain. 

Proof. The implications (i) -*-*. (ii) *-* (iii) -*> (iv) are 

trivial. Let us prove (iv) —* (v). We proceed in three steps, as­

suming that (iv) holds. 

a) As an ordered set, C = X-(MinXu MaxX) is a chain. If not, 

let x,y 6 C be such that x li y. Choose xQ6 MinXn (-O and y Q6 MaxX n 

oTy). There exists U,V G CT(X) such that V2-Cx0,yl, -V2{x,y0f, 

U D { xo»y i» -V2ix,x0i, Vj{xtx0\ and -U^4.y,y0{. Hence 
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$(T)/\$(tT)-<. ($(V)/v$(tf))ve(V)«$(V)fwhich ie absurd by (iv). 

b) If |I\^3, then 1 Minl|i-2 (and in the eame way, fMaxX. «£ 

_£ 2 . Otherwi0tf let xfyfz&MinX and teX-{xfyfzr. There exiBts 

u",Y €C7(X) 0uoh that Vzhttfl and ^SBi%f\\^B{n9%\ and -V£> 

3iy»ti. A contradiction exists as in a). 

e) If ,X|>3 and P II qf then for each x€Xvx;>p (resp. x < 

< p) implitt x > q (rtep. x < q ) . Taking into account that any ele­

ment of X dominatee a minimal element and ie dominated by a maxi­

mal one, we may assume by a) that -tpfq}£ MinX or ipfqls MaxXf 

eey {pfqiSMinX. Suppose that x > p and x^q (which implies xilq). 

Choose yeX-{pfqfxi. If y4x* there exist U,Ve 0r(X) such that 

Ua-Ipfxlf-U5'{qty)f ?a{pfqi and -V^-Cxfy^ and we conclude as 

in a) t The eame argument holds if x.#y (interchanging x and y). 

Let ue now prove that ( v ) = » ( i ) . If 1x1^3, then clearly 

Con(X) ie modular and we may assume that X « A © C © A ' where A 

and A are two-element antiohains and C is a bounded chain 

(with least element o and greatest element d). The congruence 

lattice of Cf ie dually ioomorphio to the lattice of all -{Oflj-

sublattices of ff{C)t hence it is Boolean. The congruence lat­

tice of (o3 (and similarly that of £d)) is isomorphic with M-.f 

the five-elemente modular non distributive lattice. It remains 

to obeerre that the map 9 \-+ (0 | /0-jf ©JCf ®\$yl is an ieo-

norphi0m from Con(X) onto Con((o]*Con(C).x Con([d)). This is a 

routine exeroise. 

Remark. If X ie the ordinal sum of two 2-element anti­

ohains, it is easy to see that (il)f(ill) and (IT) hold but 

Con(X) ie not modular. Indeed, let *0»y0 (resp. x1,y1) be the 

minimal (resp. maximal) elements of X. We have 

w - 9 (*0»yi>
 A 0 ly0»3ri

) ̂  & (xo»xl} 
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while 

9(ylfy0)< ettx^y^y-n^ 0(x0,yx)v©(y<)fy1) - 1. 

2»8» theorem. Let X £ V . The following assertions are 

equiTalenti 

i ) Con(X) i s Booleant 

i i ) Con(X) i s d is tr ibut ive: 

i i i ) Con(X) i e uniquely complemented! 
i v ) e ither |xt -=• 2 or X i e a Boolean chain. 

Proof. I t i e clear that ( i ) « - > ( i i ) and ( i ) ~ * ( i i i ) and i t 

has been said in the proof of 2.7 that (iv)~=Mi)„ 

Let ue prove ( i l ) « ^ ( i r ) . By 2 .7 , e ither | X U 3 or X i s i e o -

morphio to a subspace of A<2> C ® A# where AfA
# are two-element 

antichains and C i s a bounded chain. I t i s not d i f f i cu l t to check 

that, i f |X| • 3 , thenX must be a three-element chain. We may 

therefore suppose that | X | > 3 * In t h i s case, X has a l eas t e l e ­

ment (and for a similar reason a greatest one). 

Indeed, suppose that pfqeMlnX. Let r £ X - { p , q } . There ex i s t 

UfV € C(X) ouch that U a q , - U ^ { p f r l f Vs>p and -V^-fq frl . Then 

(<t>(V)A e ( p f q ) ) v ( $ ( U ) A 8 ( p , q ) ) - CJ and ($ (V) v $ (U))A0(p,q)« 

» 8(p,<l) , which i s Impossible since Con(X) i s d i s tr ibu t ive . 

We now prove that ( i i i ) -=^(iv). First observe that f i f U e 

e O'(X) — -101 and aeMaxX-U, then 0 ( - U t H a i ) i e a complement 

of 8 (U) . By ( i i i ) , any U e Cf(X) - {0 f Xl haa a greateet element 

and, for dual reasons, -U has a l eas t element. How l e t x , y be 

non-comparable elements of X. There ex is t U,V e C(X) such that 

xeU-V and yeU-V. We claim that -{UfVf i e a part i t ion of X. I f 

not, then for instance UuV4*X and UuV has a greatest element, 
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which implies Usv or Vcn and this i s impossible. Let p be 

the least element of U and q the least element of V. To end 

the proof, we shall show that X - tp ,q l . If not, le t 

r€X-{pfql and suppose for instance that p-£ r. There exist 

&%•'* OXX) such that U#2{p fq} f V + rf V*2 i q f r * and 

T*9p. Then - (u 'nv ' ) has a least element and this implies 

u ' c v ' o r V g u ' , a contradiction. 

3* The lattice of R-subalgebras of a bounded distributive 

lattice 

In this section, we dualize the results of the previous sec­

tion to obtain results on ^ ( L ) , for L e D .We omit the 

proofs which are straightforward* 

3«1» Theorem, ^f L € J) , ̂ R(I') is algebraic, atomistic 

and dually atomistic. 

3«2. Theorem. If L e l , then tfp(L) is dually aemimodu-

lar if and only if either 

(--) L is isomorphic to an ordinal sum L'® C © L, where L# and 

L are (possibly empty) relatively complemented distributive lat­

tices and C is a chain or 

(ii) all prime Ideals of L are maximal, except possibly one. 

or 

(ii*) all prime ideals of L are minimal, except possibly one. 

Let L« be the 7-element lattice of figure 1. 
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Figur« I 

Since the dual of U is the ordinal sua of tmo 2~eXeaaf.it 

antichain8, Theorea 2 7 dualizes as follows* 

3«3# Theorea, If L € J) , then ^ R(L) is dueJLLy geoaajtrijc 

if and only if L is isomorphic to (B €> l)x B' or to B $ C ^ B ' , 

where B and B# are finite Boolean algebras and C is a not aafttv 

chain, 

3*4* Theorea, Let L e D * 

a) If L is not isomorphic to I*-,, then the following assertions 

are equivalent: 

(i) ^ R(L) is modular, 

(ii) *ifR(L) is semimodular; 

(iii) ^ R(L) is geometric: 

(iv) ^n ^ ( L ) , the supremum of two atoas covers each of these 

£toat; 

(v) L is isomorphic to a sublattlce of g ® C © 2 (for, some 

chain C), or to 2^ or to 2 x 3 . 
' "" • -as " " * -at 

b> If L is isomorphic to Ly, then (il).(iii) and (iv) hold tout 

^ R(L) is not aodular, 

3*5• Theorea, Let L f t D . Then the following are equiva­

lent: 

(i) ^ R(L) is Boolean: 
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(ii) ^ R(L) is distributive: 

(iii) *.fR(L) is uniquely complemented: 

(iv) L is a chain or a four-element Boolean algebra. 

We conclude by two corollaries of the above results which 

shed some light on the problem of the characterization of 

^ R ( L ) . We are concerned here with the abstract characterizati­

on, but there is no difficulty to adapt our results to have 

information on the concrete characterization problem. 

3*6. Theorem. Let S € ID . Then S is isomorphic to 

^ R ( L ) for some L € J) if and only if S is a complete atomic 

Boolean lattice. 

Proof. If *-fR(L) is distributive, then it is Boolean, com­

plete and atomic by 3»1 and 3»5. 

Conversely, let C be a set such that S is isomorphic to 

the power set of C. Consider any linear ordering on C and defi­

ne L to be C with supplementary bounds 0 and 1 • Then ^ R(L) is 

isomorphic to S. 

3*7. Theorem. Let S be a modular lattice. Then S 1& l*_o-

morphic to tfR(L) for some L if and only if S is of one of the 

forms B, BxUcy or B.*M--x M-», where B is a complete atomic Boo-

lean lattice. 

Proof. Theorem 3.4 (and an easy computation) shows that 

the condition is necessary. 

To prove that it is sufficient, let C be a bounded chain, 

given by 3.6, such that ^ R(C) is isomorphic to B. Disregarding 

the case where B is trivial, we choose L to be C (resp. 

C €> 2^, 2 2© C e £2) and it follows that ^R(L) is isomorphic 
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to B (resp. BxM--, B X M ^ - I L ) . 
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