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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,4 (1983)

ON UNIFORM CONNECTION PROPERTIES
D. BABOOLAL and R. G. ORI

unﬁgiz We show that (i) uniform local connectedness
and property S are both closed umder uniform quotients; (ii)
the uniform product has property S (is uniformly looaliy con=-
nected) iff each co-ordinate space has property S (is uniform-
1y locally commected) and all but finitely many of the co-ordi-
nate spaces are comnectedy (iii) & uniform space has property
S 1£f its coreflection (im the subcategory of uniformly locally
oconnected spaces) has property S.
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Introduction: The concept of un;fom local connectedness
and property S were introduced imto the theory of uniform spaces
by A.M. Gleasom ([2]) and P.J. Collins ([1]) respectively. The-
s; concepts, both of which imply loceal connectedness in general
and which are equivalent to local connectedness for compact
Hauadorff spaces ([2]), are well known in the theory of metric
spaces (e.g., see [4]). A.M, Gleason ([2]) has shown that the
subcategory of uniformly locally connected spaces and unitoi‘nly
continuous maps is coreflective in the catego;y Unif of uniform
spaces and uniforr_nly continuous maps. Although not explicitly
stated it is evident from Gleason’'s construction that the uni-
formly locally connected coreflection of a uniform space fx,fu)
has the same topology as that generated by U iff (X,U) is lo- °

cally connected.
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In this paper we give a direct proof of the fact that uni
form local connectedness is closed under uniform quotiemts.
We also show that a uniform product has property S (is uniform-
1y locally connected) iff each co-ordinate space has property
S (is uniformly locally connected) and all but finitely many
of the co-ordinate spaces are connected., Finally we prove that
a uniform space has property S iff its coreflectiom (im the
subocategory of uniformly locally connected svaces and uniform-
1y continuous maps) has property S.

Seotion 1: Throughout this paper we shall use (X,%U) te
denote & uniform space, with % the family of entourages of X.
If £:X—> Y is a functiom let

DX X—>TxY
be giveh by
2(x,y) = (£(x),2(y)).

Recall that f£:1(X,%)—> (¥,7) is uniformly econtinuous 1ff
1"1 (V) et VVe?V . Unif will denote the category of uni-
form spaces and uniformly contimuous maps., The following two
concepts both of which imply local connectedness were imtrodu-
ced by P.J. Collins [1]) and A.M. Gleason [2] respectively.

Definition 1,1. (X,%) has property S iff for each Usc %,
there exists a finite family {A1§ :_1 of connected U-small sub-

sets of X which cover X.

Definition 1.2, (X,%) is said to be uniformly locally
connected iff for each Ue U , 3V e U VcU and Vix) is

connected for each xc X,

By Props we shall mean that subcategory (of Unif) of spa-
. ces which satisfy property £ while Ulg will denote the subca-
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tegory (of Unif) of spaces which are uniformly locally connec-
ted.
Since Ulc is coreflective in Unif it follows that Ulc is closed

under quotients, Nevertheleas we give a direct proof of this

fact without using any categorial methods.

Definition 1.3 (see e.g. [3]1). Let % be a uniformity for

X and let £:X—> Y be an onto function, Then the largest umi-
formity V' for Y making £ uniformly comtinuous is called the
quotient uniformity for Y relative to £, and £ is called a uni-
form quotient map.

V' is defined as follows:
Let V, = {Vc Yx Y|V contains the diagonal of Y=Y end £~ (V) &
€ U3 . Then U= {V c YxY| there exists a sequence {vn;:ﬂ c

<V, end VoV cV . for all nx13,
We have the following result which is analogous to the well known
result for topological spaces that local connectedness is pre-

served by quotient maps.

Theorem 1,4. Let f:(X,%) —> (¥,7’) be a uniform quotient
map. If (X,7%) is uniformly locally connected then so is (Y, 7).

Proof: Let V, € ¥ be given. Then there exists a sequen-
ce {V 3 . in V| such that V oV, cV_, for all n = 1,2,... .
We may assume without loss of generality that Vn is symmetric
for elln = 1,2,... . Since _1'_'1 (Vy) € U there are surroundings
U and U’ such that U’ is symmetric, UcUc U'o U'c ;'1(V1) and
Ulx] is connected for each x¢ X, For each yeY let ¢! ve the

b g
connected component of y in V,[yl and W, -U{c;xc;ler « Then

(1) Wy c Uiv iyl »Vyiyl | ye ¥t = VyoV eV 3

(11) Wilyl - U{G;\yc cl} which is connected since each

c; is connectedy and
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(111) W, & Vys for

U{U(x)»Ulx] | x<X} c U Ix) < U lx] | xe X =
=% u'c (v,
Therefore
2 (UUlx)=xUlx] | xeX}) = U{2(UIx]) > 2(U[x]1)| xcX}c V,.

Since C; is the connected component of y in V1IyJ we must
have that c;:)t(U[x]) Vx such that y = £(x). Therefors
£(0) c £(ulx] x Ulx) |xeX}) e U{Clye Y} = Wy, Homce £7'(W,)cd
and therefore W, € 7,. Consider now £'1 (Vy)e As above let c§
be the commected component of y in 72[11 and let
W, = UL02x02 | 76 YT c ULV, Iyl =V, 03] | 7€ XS = Vo Vpe vy,
Now W51yl is connected for all y €Y; hence WyoW, = U{W,[y] x
xWyly) |yeYic U{c;xc;lyeﬁ = W, and (as above) W, ¢ 7.
Continuing in this manner we obtain a sequence '"n;nﬂ such that
WooW W . for all n = 1,2,3,... and £7 (W) c % Vn>1. We
have thus found W,C V, such that W, € V" end Wy[y] is conneot-
ed for each y¢ Y. This completes the proof.

The cui)catosory Props is not epireflective in Unif simce
it is not closed umder subobjectsy consider, X = [0,1] and A =
10,11 NQ , both having the usuel metrio., In fact Props is not

closed umder products as well, The same is true for Ulec.

Now let (X, %,) be non-empty uniform spaces for each
o € A, and let X '.(?A Ioc be the uniform product of these
spaces with uniformity % . Let P, :XxX —> X <X, be given
by P (x,¥) = ( sr‘,(x), a'r‘(y)) where s rrx_c--, X is the
projection map. Then we have:

Theoremm 1,5, (TTX, ,%) has property S iff
(1) ~each (X ,'u.‘) has property 3, .and
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(11) all but finitely manmy X, are connected.

Proof: Suppose that (TTX_ ,%) has property S. Then since
W, TTI* ~—> X is uniformly continuous and onto, each
(xw » %, ) has property S. Also TTX_  1is locally comnected
([11), and thus all but finitely many X, are connected.

Comversely, let U ¢ % be given. Find U,c1,U“2.... oo

n
(say) 1n Ugg, (1 = 1,24000,0) much that;r;:(u,c1) n

-1 -1
nraz(Uda)h ...nr&.(U“‘)cU. We may assume that the se

Lolyyohyeney ec.! has been expanded to include sll o¢ for which
X, is not connected. Since (X .‘1,%‘1) has property S for each

)
= 1:2,000,m, W have that X, = 524 Ayy (say), where each

‘13 is connected nxdi and ‘1;\"‘13‘"«-1 for J = 1,2,...
eeesn(i). For each i, 1£14n, let J; be a variable such that
143, £n(1), and consider sets of the form
Y ‘ A [ Y] [
Jyadgeeeedy Twa B Xen Mg Ay x e Ang

Clearly each sum Y is connected since each factor

Jy0dpreserdy

in the product is comnected. Purthermore X = U‘.!J” Jpreeesd |
LN ] n

11 3,4 n(1) for each 1 = 1,2,,..,n} is clearly a finite union.

As can be easily verified each such !;‘1. 32’ 3 is U-small,
ecey n

This completes the proof.

Theorem 1.6, (TTX c »U) is uniformly locally connected
ire

(1) Each (X, %) is uniformly locally connected, and

(i1) all but finitely many X, are connected.

Proof: Assume (TT X, ,%) is uniformly locally connected.
Now since o : WX, —> X is uniformly open, uniformly con-
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tinuous and onto (and hence a uniform quotient map), the fact
that each (X, %, ) is uniformly locally connected follows from
Theorem 1,4 above, Moreover as TTX“ is locally comnected (see

[11), all but finitely many X, are connected.
Conversely let U € %4 be given, Pind Uecie uﬁ (1 =
-1 -1
= 1,2,...,0n) such that %1(U¢1)n...n1&n(uxn)c U. We may cle-

arly assume that the set {ct.1,ecz,....ecn§ has been expanded to
include all « for which X, is not connected. Since for each
1 =1,2,,..,n, (xﬁi, Ql,wi) is uniformly locally conmected, we
find for each 1, V, € 'M.“;l such that v‘;: U, 208 Vor i[-J
is connected for each scX <y’ Then

=4x(vx)cf\4°‘(0“)cu

and for each x = (x, )€ X we have

-l -1
o0e v n- x L) .
(I"x1 (V‘x‘)n n Pd‘( xn))[x] -°‘*“‘-1:---v°‘u x.vﬁ Ixac11 > o
eee X Vdn[xdn]

which is conmected, as each factor in the product is connected.

This completes the proof,

Section 2. A.M. Gleason ([21) has proved that Ulc is co-
reflective in Unif, Denote the corresponding fumctor by UL. His
con‘atmotion of this coreflection is as follows:

Let (X,%) be a uniform space and let J be the topology of %,
Let (X, J*) be the locally connected coreflection of (X,J ). For
each U e U , let

Vy = {(x,y)€ XxX | there exists a J¥ -connected subset K
of X containing both x and y such that Kx Kc U#f,
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Then {VUlU €U} is a basis for a uniformity 7 on X, and (X,?’)
is the uniformly locally conmected coreflection of (X,%) with
the associated topology T*.

Although not stated by Gleason it is easy to prove that
ULX and X have the same topology generated by % if and only if
(X,%U) is locally connected.

We end this paper by showing how the concept of property
S relates to the uniformly locally connected coreflection of a
locally connected uniform space.
It is clear that if Uc Zl.1, where U and U' are compatible
uniformities on X, and if (X, 'u‘) has property S then so does
(X,U), However if (X,U ) has property S (X, ’&L1) need not of
course have property S. The significance of the next result is
that even though ¥ o U , property S is retained if (X,%) has
property S.

Theorem 2,1. X & Props <> (UL)X¢< Props.

Proof: It suffices to show necessity only. Let Ve ¥ and
find U € % such that Vyc V. Since (X, ) has property S, X can
be written as a finite union of connected sets ‘i' 1 =1,2,000
eceyn (8ay) such that Ay>A;cU for each i, Since A; is connec-
ted this means that Ay Ajc VU vi.

This completes the proof,
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