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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS
Bogdan RZEPECKI

Abgtract: ILet E be a Banach space, K a nonempty closed com-
vex subset of E. Suppose that we have a comtinmuous operator T
which maps K into a compact subset of E and an operator F from

x K imto K. Melvin I7]) proved that if for each x, F(x,+) is
continuous and F(+,x) is contraction, then the equation
P(?(x),x) = x has a solution, The purpose of this note is to gi-
ve some generalizatioms of the Melvin s result for multivalued
mappings.
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Let E be a Banach space, K a nonempty closed convex subset
of E, Suppose that we have a continuous operator T which maps K
into a compact subset of E and am operator F from TIKIx K into
K. W.R. Melvin L7] proved thet if for each x, F(x,+) is continu-
ous and P(.+,x) is contraction, then the equation F(T(x),x) = x
has a solution. For F(x,y) = x + G(y) we obtain the fixed point
theorem of Krasnoselskii [6] which combines both the Banach con-
traction principle and the Schauder fixed point theorem.

Problems of the said paper are in a tight connection with
the results of J. Daned (especially Proposition 9, Theorem 9 and
the consequent Remarks 1 - 6, pp. 34=37) in the work [2]., These
results should be made generalized for multivaluea mappings. In

this note, we consider the relation x €& P(T(x),x) with F taking
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values in the family of nmonempty bounded closed comvex subsets
of an uniformly comvex Banach space. For other generalizations
see [3] - [5], [8] and [9].

The set of all nonempty subsets of a set X is denoted by
X, Let %(X) be the family of all nonempty closed bounded con-
vex subgets of a real normed linear space X, 3(X) will be re-
garded as a metric space endowed with the Hausdorff metric d.ﬂ,
i.e.

dH(A,B) = max (:uepA a(x,B), ?{uc?B da(x,4));

here the distance between any point x¢ X and subset Z of X is
denoted by d(x,Z) (= inf {lx - s l:ze¢2}). Por metric spaces X
and Y, C(X,Y) stands for the space of continuous bounded func-

tions from X to Y endowed with the usual supremum metric 6.

We begin with

Definition. Let X and Y be metric spaces and let $ be
a real-valued nonnegative function defined om C(X,Y). A multi-
valued mapping F:Xx Y —- ZY is called a Kg-mappins it (1) for
each fixed —xsx, P(x,+) is closed on Y (i.e. Ip—>7, end z, —>
—> 1z, with z ¢ !(x.yn) for n>1 implies that z € P(x,yo)),
and (2) for every f< C(X,Y) there exists he€ C(X,Y) such that
he(x) ¢ F(x,f(x)) for xcX and &(f,h,) = H() - & (h,).

Proposition. Let X be a metric space, Y a complete met-
ric space and let P:Xx Y — 2! be a Ké-mppins. Then there
is a function he C(X,Y) with h(x)< P(x,h(x)) for x¢eX,

Proof. Let h ¢ C(X,Y). Since P is a K@ -mapping we ob-

tain h < C(X,Y) (n = 1,2,,..) such that h (x)< ¥x,h _,(x))
for x€ X, and

m=4
6 (k) < = 6(hy,hy,9) < §(n) - $by)
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for O£ k<m., Henoe P(h)) = P(hy) =z $(n,)2 ..., and conse-
quently (hn) is a Cauchy sequence in C(X,Y).

Let h = 1im h_ im C(X,Y), Por x€X, we have h (x)— h(x)
-0
as a2 — 00 and b, (x)6 F(x,n (x)) (n = 1,2,0..) and, since
P(x,+) ia closed, 1t follows that h(x) & P(x,h(x)).

Now we are able to state the following

Theorem 1, Suppose we are given: E - a Banach space, Y =
& nonempty closed comvex subset of E, and T - a singlevalued
contimuous mapping from Y into a compact subset of E, If F: T_ﬁx
<Y —»2Y 15 a KQ-npping, then the relation x€ P(T(x),x) has

a solution in Y.

Proof, Put X = T(Y]. By Proposition there exists hg C(X,Y)
with h(x) ¢ P(x}h(x)) for each x€X. Now, we consider the conti-
nuous mapping x +—» h(T(x)) of Y into itself, It can be easily
seen that this operator has values in a compact subset of E,
Applying Schauder ‘s theorem we infer that there is a point x,
in Y such that h('r(xo)) = x,. Consequently x € I(T(xo),h('r(xo)))
= P(T(xo),xo)., which completes the proof.

The Lemma below is due to Bank: and Jacobs [1] and is ba-
sic in the proof of the next result.

Lemma, Let E be a uniformmly convex Banach space and X a
metric space, If G:X —> ¥ (E) is continuous, then there is a
unique continuous function g:X—>E such that g(x)€ G(x) end
le(x)ll = inf {kyl :yeG(x)% for each x in X.

Theorem 2., Let E be a uniformly convex Banach space, K
a nonempty closed and convex subset of E, T a singlevalued con-
tinuous mapping from K into a compact subset of E. Suppose
that P is a mapping from T(K1xK to FE(K) satisfying the fol-

e
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lowing conditioms:(1) P(s,x) is continuous om TIK] for every
x in K, and (2) dg(P(x,xy), K(x,x,))£€k llx; = x, 1 for a1l x
im T[K] and x;, X, in K and with & constant k<1,

Under our assumptiomns there exists a point x, in K such
that x € F(T(x)),x,).

Proof. Let I = T[K1l. Pirst of all we note that if ¢ ¢
€ C(X,K), then x v+ P(x,f(x)) is contimuous on X, and, by the
Lemma, there is a unique function h,& C(X,K) with hrlx) &
CP(x,f(x)) and Nf(x - hr(x)ll = d(f(x),F(x,2(x))) on X.

Assume that f € C(X,K) is & given function. By the facts
above, there exists a umiquely determimed sequence (fn) of funo-
tioms f € C(X,K) (n = 1,2,...) such that

ta(x) e F(x,f,_4(x)) end

b (x) -2, (@) = ale,_,(x),K(x,q _4(x)))
for all x&X. Hence we obtain
be (x) - 2, (@Y £ ag(P(x,2, 5(x)), P(x,2,_,(x))) &

cxle, (@ -2, (e, 4™ Iz (x) - £,
and

() [
n-i
g T2t )4 6(2,2) Z ™ < 0.

Comsequently, P is a Kg-upping on X with the function
$ :1C(X,K) —> L0,00) defined by setting
' @
o(zy) = ng"l & (thetyq)e

So, our result follows from the Theorea 1,
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