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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,4 (1983)

THEOREMS ON MULTIFUNCTIONS SATISFYING
A RATIONAL INEQUALITY
V. POPA

bstract: We prove a fixed point theorem for a sequence
of mu unctions satisfying a rational inequality which gene-
ralizes theorem 3 from [1],
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In 1] B, Fisher gave the following theorem

Theorem 1, Let S and T be mappings of the complete met-
ric space into itself such that for all x, y in X either

(1) a(sx,my) = & d(x,8x).d +b d(x «d(y,8x

d(x,sx) + dly,Ty)
if 4(x,Sx)+d(y,Ty)+ 0 where b>0 and 1< 06«2, or
d(Sx,Ty) =0
otherwise, Then each of S and T has a fixed point and these
points coincide.
We now prove a similar common fixed point theorem for two
mltifunctions T, and T2 and for a sequence of multifunctions

which generalize theorem 1,
The method used is a combination of methods used in [1]-

B33.
Let (X,d) be a metrioc space. We denote by CB(X) the set
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of all nonempty clesed bounded subsets of (X,d) and by H the
Hausdorff-Pompeiu metrie on CB(X)
H(A,B) = max {sup d(x,B)3 sup d(y,A)?
XecA %neB

where A,B¢ CB(X) and
d(x,A) = 1’.;‘:4 a(x,y).
Let A,B¢ CB(X) and k>1. In what follows, the following well-
known fact will be used: For each a¢A, there is a b¢ B such
that
d(a,b) < k H(A,B).
Let (X,d) be a metrie space, we denote
&(A,B) = sup fd(a,b); acA and baB}
where A,B¢ CB(X). If A consists of a single point "a" we write
d“(A,B) = J’(a,B). I J(A,B)=0 then A=B= {a} (Lemma 1 [4]),
Let 2:X—> X be a multifunction. Denote
#(T) =fxcXixetxis

Lemma, Let (X,d) be a metric space and T, 1Tre(X,d) —
—> CB(X) be two multifunetions. If
; c.d(x,?,x).aP(y,2, y)+bd(x,2,y).aP(y,T,x)
(2) EP(2,x,%,3)4 el bl 4 bk hi
d‘(x'!\‘x) + J(IOTZY)

holds for all x,y<X for which d’(x.!,,x) + J(y.tzy)#o where
pz1, bZz0 and 1< 0<2 and F(T)+@, then F(T,)+ § and F(27,) =
= 1(12).
Proof. Let u¢ F(T,), then u< Tyu and if d(u,T,u)% 0 then
by (2) we have
aP(u,%,u) € BP(7,u,2,u) <
c.d(u,?,u).aP(u,Tu) + b d(u,T,u).aP(u,?,u)
4'(u,2qu) + d(u,?pu) B
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0. 4(u,?yu).aP(u,T,u) + b a(u,2,w).aP(w,?,u)
d(u,?4u) + a(w,%Hu)

which implies d(u,!zn) = 0. Since T,u is closed, this shows that
uc.!zu, which implies F(T,)c F(%,). Analogously, ¥(T,)c F(%,).

ZTheorem 2, Let (X,d) be a oomplete metric space and 2.,
T X —> CB(X) two multifunctioms such that for all x,y€ X the
inequality (2) holds if 6‘(1,1'1x) +d"(y.!21)*0 where p>1, 20
and 1< 0<2, Then !1 and !2 have common fixed points and r(!,) s
= I(Ta)o

Proof. Choose & real ?}mbor k with
P
(3 1<x<(3)

Let X6 X and x4 6 !110. Then there is an 1251!2:1 80 that

L4

a(xq4%,) € & H(Tyx , 25Xy ). Suppose XyeTyreec1Xopy 1s%ppneess O0Uld
be chosen so that Xon-1 € !1x2n_2,x2nc Iz"z:m and

d<x2n-1 ’321) £k K(!112.’1'1—2 '!2x2n-1)

Axpp p0%2p-1) % K H(2Xpy 5,%5%5y 3).
Suppose first of all that
O (xpp2+T1%2n2) + I (Tpp +T%ona1) = 0

for some n. Then Xy o = {Bx, o} = xp ¢ = {Tx, 4} ana
Lo ™ Xon1 is a common fixed point for 1‘1 and !2.

Similarly d'(Xpp 19TpXpp q) + (x5 T4Xp,) = O for some
n implies that X, 4 = Xy, 18 & common fixed point for T, and
122.

Now suppose that d(x,  o,2ix, o)+ d(Xp, 1,Tx,, 1) 0
for n=1,2,... . Then by (2) we have successively

aP(xpp 1 1%pn) & KPEP(R 2, 5 B5Xpp )
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°‘(x2n-2 o x2n-2) * dp(12;;;—1 ToXon-1 )+bd(x2n-2 +Ta%on-1 ).
(Xon20M1%on2) + (Xpn_14T2%5 )
« 8P (ton 1 MTpnp) | XPe0r &y p0Tpp 4P (x4 0%pn)
e Uxpp 2 s%pn1)+8(Xpy_q9%5,)
If a(xpp_q9Xpy) = O, then X5, ¢ = X, is a common fixed
point for Ty amd T,. If a(x, ,sXp,)#* O then

£ kp.

a(xyp _19%pn) € (ckP=1).d(x,, _50%pp q) for m=0,1,2,... . Si-
milarly we have

A(xpps%o041) £ (0kP=1)0d(x,,_14Xp,) for n=0,1,2,... .

Repeating the above argument, we obtained

alx,,X;4q) € (ckP-1)™ a(x ,x)) for n=0,1,2,... .
Since 0< (ckP<1) <1 by (3), then by routine calculation one can
show that {xn} is a Cauchy sequence and since X is complete, we
have lim x, =u for some ue¢X.

If we now suppose that d(u,Tyu)= 0 then

aP(x, o 2yu) £ BP(T,x, _q,Tqu) <

od(u,yw). aP(xy, 1 BpXoy )+ DA(Ty, 101w 8P, By )
I(u,2u) + 0 (Xpp_1+Tp%on 1)

£

cd(u,‘f,u).dp(xzn_1 1 Xp) + bd(x2n_1,T1u).dp(u,12n)
a(u,Tqu) + d(xy,_4,%,)

and on letting n tend to infinity we have d(u,T1u) £0, It fol-
lows' that d(u,T.,u) = 0. Since Tyu is closed, this shows that
ué Tyu. By lemma ueTou and P(T,) = F(T,).

It T, = T, we have the following theorem:

Theorem 3. Let (X,d) be a complete metric space and let
T:(X,d) — CB(X) be a multifunction such that
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HP(1x,my) < Sz, d(y,20)P + ba(x,Ty).a(y,Tx)P
» =

J(x,Tx) +4(y,Ty)
holds for all x,ye X for which d(x,Tx) + J(y,Ty)= O, where
p>1, b2 0 and 1< ¢ <2, then T has fixed points.

It T1 and T2 are single valued mappings we have the fol-
lowing theorem:

Theorem 4. Let T.‘ and !2 be mappings of a complete met-~
ric space (X,d) into itself such that for all x, y in X either
cd(x,?;x).dP(y,T,5)+ b d(x,?,5).d%(y,?;x)

a(x,Tyx) + d(y,'.!ay)

aP(2yx,2,y) £

if da(x,Tyx) + d(y,'l'zy)*o where p>1, b20 and 1<e6<2 or
d(T1x,T2y) = 0 otherwise, then T, and T, have a unique commonm
fixed point u.

Proof. The existence follows from the theorem 2. Now sup-
pose that ‘.!.‘1 and '.L'2 have a second fixed point u’. Then
d(u,?qu) + d(u’,%u’) = 0 implies d(Tyu,T,u’) = 0 and so u =
= Tyu, u’ . Tau’ and Tyu = Tzu' and so the common fixed point
of T, and ‘1‘2 is in this case unique.
We note that without the extracondition "d(x.Tyx)+d(y,T,¥y) = 0
implies d('!,x,sz) = O" the common fixed point is not necessa-

rily unique. (Ex., PPe 40. [130)
Remark, If p=1 then theorem 1 ig obtained.

Theorem 5. Let (X,d) be a complete metric space and

{Tn}nen a sequence of multifunctions of X into CB(X) such that
cd(x,i‘,x).dp(y.l‘ny) + bd(x.&y):d’(y,'t,x)

5 (x,24x) +d(3,T,y)

(4) BP(2yx,7 ¥)¢

holds for x, y in X for which J (x,Tx) +J(y,T,y)# 0, where
nz2, pz1, 20, 1<c< 2, then {Tn}nf.n has a common fixed
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point and !(!1) = !(!n).
The proof follows by theorem 2 and lemma.

Let X be & nonempty set and ¢ and 4 two metrics on X and
23X —> X & single valued mapping. Por such mappings Maia [5]
proved a fixed point theorem which was generaliged in meny di-
rections by Iséki [61, XI.A. Rus [7],[8]1,K.L. Singh [9] and ot-
hers. I gave in [10] and [11] some generalizations of Maia’s
theorem for mmltifunctions.

Now we prove a fixed point theorem for a sequence of mul-
tifunctions in a set with two metrics,

Theorem 6. Let X be a metric space with two metrics e and
d., If X satisfies the following conditions:

(1) eo(x,y)2a(x,y)3 Vx,y€X,

(2) X is ocomplete with respect to e,

(3) two multifunctions %,,%,:X — X are punctually closed
and punctually bounded with respeot to both metrics,

(4) 2, or T, is u.s.0. with respect to e,

(5) +the inequality (2) holds for all x, y in X for which
J'(x,?4x) +(y,?,7) 0, where p>1, bx0, 1<o0<2, then T,
and T, have a common fixed point and F(T;) = l(!z).

Proof. Analogously as in the proof of the theorem 2, for
any x,6 X we can construct a sequence {xn} such that x, .4 €
€ !1x25. {x,1 veing a Ceuchy sequence with respect to d. The-
refore, by e<£4d, {x } is a Cauchy sequence with respect to e
and since X is complete with respect to e, X,—> X. As T is
Ues.0. from the theorem 4 [10], T; has a oclosed graph and then
from Xyn.1¢€ T4Xyp it results x« Tyx and from lemma P(Ty) =
= I(Tz)o
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Theorem 7. Let X be a metric space with two metriocs e
eand 4., If X satisfies the following conditions:

(1) The sequence of multifunctions { Tn‘nsl is formed by
punctually closed and punctually bounded multifunotions with
respect to both metrics,

(2) e, 4 and ?, satisfy conditions (1),(2) and (4) ot
theorem 6, ‘

(3) the inequality (4) holds for all x, y in X for which
6'(1,111) + d'(y,Tny).-#o, where nZ2, p21, 20, 1<e6<c 2, then
{Tn}nell has common fixed points and F(T,) = r(!n).

The proof follows by theorem 6 and lemma.
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