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ON THE NOVAK COMPLETION OF CONVERGENCE GROUPS

ROMAN FRIC.MARTIN GAVALEC

Abstract: Some properiies of a convergence commtative group 6
are not inherited by its finest completion G, (constructed by J,
Novék), We study two such preperties (G is chet or tersisa-free,
respectively). The results shed more light on the interplay bet-
ween algebralic and oclesure properties of group completiens,
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1, Introduotion, In terminology and netation on convergemee
spaces and groups we follow [4] and [5], Some facts, however, are
recollected below,

A oconvergence ocommutative group, abbreviated to co-g »r ¢ m p,
is a quadruple (6, %y',"-) such that (G, +) is a commutative grewp,
(6, g,y) is a oconvergence space (1.0.,yc G”xG defines a seguen~
tial convergence satisfying axioms (£), (£), (£,), and p: 26—’26
is the induced convergence oclosure operator -~ it need not be idem-
potent), and the algebraic and closure structures are cempatible
(1.e., 7y satisfies: (56) If &= y-bims, and g =Y-dim po s
then there is a subsequence <4, > of (> such that ‘b"y%‘ﬁ"'x
As a rule, y' denotes the largest oonvergence induoing the same
closure operator ¢, We say that <y, > isa Cauchy se-
quence if for evewy gubsegquence <'2n.> of <k > the sequemee
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<, - 14;,“) g’i converges to the neutral element 0 of G, and (
is compl et e if every Cauchy sequence ?"— converges in (.
A complete oco-group (E, g,f,-‘-) isa completion of
(6, 9,5, +)ir Gis a }n-dcn-o subspace of (G, f},y) and a
subgroup of (G,+) .

For every co-group ( G, 9: 7, ) J.Novhk has constructed,
in [5], & completion (G,, U, 5 ) + )o It was shown in [1J that
the completion has nice categorical properties (it ylelds an epi-
reflector into complete co~-groups) (G1 ’ % s Ta st ) will be oalled
the NovAdk ocompletion of(G,(;,;,-&).Notothgt
(unlike in the case of a topological group) a co-group can have
more nonequivalent completions, In [2], V,Koutnik pointed out
that if G 3is a Fréchet space (unique sequential limits), them G,
need not be a Fréchet space, He also proved that if G is Fréchet,
then G, is Fréchet iff the quotient group G,/G is finite,

Example 1, Consider the group @ of all rational numbers
equipped with the usual convergemnce of sequences, It 4is a Fréchet
oc-group, The Fové.k completion of Q yields the group of all real
numbers equipped with a rather strange convergence and closure,
In view of Koutnfk’s result, it is not a Fréchet ooc-group.

Some features of Example 1 are furthexr developed in the next
section, In the last section we show that the NovAk completion

of a torsion-free co-group need not be torsion-free, Ve also men-

tion some related problems,.

2, Closure order. Recall that if (L, ., 1) is a oconvergence
space, then for each ordinal number 4 a closure operator A.‘ is
defined induotively: for A< . put A°4-4 and 14 - (}L(J‘ 2 (Rﬂ/')
for >0, If {1 is the first uncountable ordinal, them A is

idempotent, hence a topology. The smallest ordinal « for which
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2‘ is idempotent is said to be the topologiocal or -
der of A; it will be denoted by €c (1) . Fréchet spaces (unique
sequential limits) are pracisely those oconvergence spaces (L,f) 3)
for whioch Yo (2)=17.

In [3], L,MiZ{k has construoted a co~-group the topological
order of which is greater than 7/ but it has a dense subgroup the
topological order of whioch equals 7, Our first result shows that

such groups are not rare,

Theorem, Let (G, q: #,+ ) be an incomplete co-group such that
toly)= 1 and let (G', q,:y,,*f') be its Novék completion, If (G, +)
is a divisible group, then <0 (%)>7.

Proof. If G, is divisible, then the quotient group G,/c is
also divisible, Since G ¥ [, and since the only finite divisible
group is trivial, the group (,/6 is infinite. The assertion now
follows from the before mentioned result of Koutnik (cf, [2]),

Corollary, Let G be a subgroup of the cc-group R of all real
numbers such that Q ¢ G £ R and let 64 be its NovAk completion.,
Then 6, is not a Fréchet space,

Proof, It follows from the construction of the Novdk comple-
tion that (G{,H is the group of all real numbers, It is divisible
and hence G, is not a Fréchet space,

However, the divisibility is not a necessary ocondition for
the Novdk completion to be Fréochet., We present an example of a
Fréchet co-group G such that its Novdk completion G, is not Fré-

chet and G, is not a divisible group,

Example 2, Let G be the ring of all finite subsets of a coun-
table infinite set X, Then G equipped with the symmetric diffe-
rence as a group operation and with the usual convergence of sub-

sets of X is a co-group and the Novéik ocompletion G, of G is the

- 343 -



set of all subsets of X equipped with the symmetric difference
and a convergemce different from the usual convergence of sub-
sets (cf. [5]). It is easy to see that G is a Fréchet space,

€, fails to be divisible (each A€ G, 4# 90, has order ), anda
6, fails to be a Fréchet space ( ; /G is infinite).

Problem 1, Does there exist an incomplete Fréchet cc-group
G such that the Novik completion 6, of G is also a Fréchet
space?

Problem 2, Let G be an incomplete cc-group and G, its No-
vék completion., Describe the relationship between fo (g) and

to(z,) . Es it true that if to(y)7, then to(p,)£l2

3s Algebraic order. In this section we consider the rela-
tionship between the (algebraic) order of elements of a cc-group
and the order of elements of its completion,

It is known that the completion operator for topological
groups does not preserve torsion-type properties, E.g., the
complete topological group | of all complex numbers having
absolute value 1 has two demnse subgroups, one of which is a
torsion-free group (an infinite cyclic group) and the other one
is a torsion group (the subgroup of all elements of finite or-
der). These groups are first countable. Hence, they can be con-
sidered as Fréchet cc-groups, Then | equipped with the corres-
ponding convergences and closures ylields the NovAk completions
of the two co-groups. Consequently, torsion-type properties are
not preserved by the Novdk completion of cc-groups,

We present here an example of a countable incomplete Abe-

lian torsion-free co-group G the Novik completion 6, of which
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is not torsion-free and all nonzero elements have either in-
finite order or order 2,

Note that G is a first countable Hausdorff topological
group and the topological completion 5 of 6 has the same

algebraic properties as (, (see Remark).

Example 3. lLet G be the weak direoct product of ocountably
many copies of the group Z of all integers. The group 6 ocan
be visualized as the group of all mappings of N into Z having
finite support (for each g€ G, $(2)=0 for all but finitely
many m €V) eqipped with the usual pointwise addition, For e/ ,
let H; be the set of all €06 for which §(1)= 3(2)= - =9(4-1)= 0
and Y g(n) is an even integer. Then (H;> is a decreasing
sequence of subgroups of (G the intersection of which contains
only the neutral element 0 of 6, Consequently, "l 's can be
taken as a clopen basis at 0 and G becomes a first countable
Hausdorff topologiocal group., It follows from Corollary 4 in [4]
that G is also a Fréchet cc-group in which a sequence <G>
converges to ( iff for each #eN the sequence <34? is in H&
for all but finitely many me AN . Denote the resulting cc-group
vy (6, Y g, +). Lot (6,,(;,4,%) be its Novék completion, We
show that G, has the desired properties.

Recall that two Cauchy sequences <4,> , <A~> are equivalent
it 0=bim (4p-h,) . The group G, consists of the set of all
equivalence classes of Cauchy sequences (each point of G is
identified with the class ocontaining the corresponding constant
sequence) equipped with the natural group structure and a cer-
tain convergence of sequences, Each divergent Cauchy sequence
<h,> in G converges in 5, to the equivalence class E(/»,‘?]

it belongs to,

- U845 =



Let <A, > be a divergent Cauchy sequence in G . Then there
are two possibilities.

1, For each k<N there exists m(4)¢ AN such that AA(£)= 0
whenever m >m(k) . Then <1h,> converges in G to 0 and the
ideal point [<A,>] €6,  has order 2.

2, There exists d¢N such that A,(4)+ (0  for infinitely
many méN ., Then for each m ¢V the sequence <{m Am> cannot cone-
verge in G to 0 . Hence the ideal point [<A,>J€ G, has
infinite order,

It can be easily verified that 64 is not a Fréchet space,

Remark. Since & is a first countable topological group,
the topological completion G of & is the group G, (consisting
of equivalence classes of Cauchy sequences in G ) equipped
with the corresponding topological and uniform structures, Thus

each nonzero element of C has either infinite order or order 2,
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