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C O M M E N T Â T i O N E S M A T H E M A T I C A E U N I V E R S I T A T I S C A R O U N A E 

24,2(1983} 

REPRESENTATION OF SEMIGROUPS BY PRODUCTS OF TOPOLOGICAL 

SPACES WITH PRESCRIBED CARDINAL FUNCTIONS 

NGUYEN VAN VINH 

Abstract. Given an m-tuple $lf... , <f>m of cardinal func­

tions and an m-tuple of cardinal numbers <*-»...,ac , we ex­

amine when there exists a space X homeomorphie to Jr but 
o 

not to X such that $i(X) » oc i for all i » lf...fm. We show 
that under some natural assumptions about the cardinal functi­
ons , such spaoe X exists provided that there exists at least 
one space Y with <b±W • oc+ for all i » l,...fm. A more ge­
neral setting of representations of commutative semigroups by 
products of spaces is investigated. 

Key wordst Representation, semigroup, topological pro­
duct /"claraTnaT function. 

Classification! Primary 54B10, 54H10 

Secondary 20M30 

I. Introduction and the Main Theorems. Let (Sf+) be a 

commutative semigroup, 3C a class of topological spaces. A 

mapping r : S —> 3C such that for all s-,fs2eS 

(i) r(s-) is homeomorphie to r(s2) iff s-̂  « s2 and 

(ii) r(s-, + s2) is homeomorphie to r(s1)j<r(s2) 

is called a representation of (Sf+) by products in % • 

Representations of commutative semigroups by products 

of topological, algebraic or relational structures have been 

investigated by many authors, for a survey of topological re­

sults see L7J. 
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In the present paper, we investigate representations of 

semigroups by products of topological spaces with prescribed 

values of some cardinal functions. The notion of a cardinal 

function is as in £23 or C 33» i.e. an arbitrary function from 

the class of topological spaces into the class of all cardi­

nal numbers such that homeoraorphic spaces have the same value. 

Given a class T of topological spaces, an m-tuple of car­

dinal functions $ l f.. . f $ m and an m-tuple of cardinal numbers 

oC.,,... f oCmf we denote by 

K ^ — > o6lf...f § m~->oO m) 

the class of all spaces X e T such that ^ ( X ) « at, for all 

i « lf...fm. The aim of the present paper is to prove the two 

theorems below. 

Theorem 1. Let T be a class of topological spaces con­

taining all metrizable continua and closed with respect to 

homeomorphic images, finite products and countable coproducts 

(« disjoint unions as closed-and-op en subspaces). Let $••,••« 

..., $> be an m-tuple of cardinal functions such that, for 

every i « lf2f...fmf 

(a) ^ ( X ) £ tf0 for every space X e T and ^ ( K ) « &Q 

whenever K is a metrizable continuum; 

(b) ^ ( X x K ) • $^(X) whenever X e T and K is a metriz­

able continuum; 

(c) $.( JjL X ) » sup $H(X„) (where 11 denotes the 
i flt» 1 n rtv.t.j,,,, * » 

coproduct), whenever X e T for a l l n « l f 2 f . . . f 

(d) $±W - ^ (X 1 1 ) for a l l n » l f 2 f 3 f . . . and a l l X€T. 

Then for every m-tuple oilf...foC of infinite cardinal num­

bers every countable commutative semigroup has a representa-
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tion by products in the class 

T . T(-,1-*nc1 * n~><* m) 

provided that the class T is non-empty. 

Remark» It is '-.-** l«k ,,—n that; * , g. khe weight, or -weight, 

net weightf density, c/iuraoter, pseuai^haraciei fulfil (a)-(d) 

abov?, so the Theorem 1 can be applied on them*,, the class T 

can be chosen to be? e*g# the class of all topological spaces, 

all T-.-apaces, Hausdorff, re/^ular, completely regular, rrstriz-

able and ^mij others* Unfo.*' vunately9 the -"lass of compact spa­

ces does t:ot fit in it, ibis class is not sured with respect 

to countable disjoint unions. We present here another theorem 

for the compact Hausdorff spaces* 

Given a seventuple oC-,*,,,, oc... of cardinal numbers, let 

u*i denote by 

C ^ R Gomp ( w — > o C 1 f sr-—>cc0!,nw—->oC-» f d —~>oCA f 
^^'"x^H X c. J ~f 

^ — ^ o C - ^ ^—-^oCg, t —- ><*,-, 

the class of all compact Hausdorff spaces X 3uch that its 

weight w(X) « oC^, or -weight jr(X) » oC2, net weight nw(X) * 

=- cx/-,f density d(X) » oC.f character r (X) » oCcf pseudocha-

racter i}t(X) « oCg, and tightness t(X) » oC«. 

Theorem 2. For every seventuple o£-,#»#fac7 of infinite 

cardinal numbers, every finite cyclic group has a representa­

tion by products in the class C , . provided that this 
OC-̂  , • • • , OCy 

class is non-empty. 

Remark. If -vr(0) fr(l)"^ is a representation of the cyc­

lic group c2 * 40,l^j, then the space X « r(l) is homeomorphic 

to X3--* r(l+l+l) a. r(l). but not to r(0) a* r(l+l) a X2. Hence 
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the result mentioned in the abstract is obtained as the spe­

cial case of Theorem 1. The Theorem 2 can be also applied on 

the group c
2
» 

II. Proofeof the Theorems 

1. Let N be the additive semigroup of all non-negative 

Integers, "ST the semigroup of all funotions from M into H with 

the pointwise addition (i.e. (f+g)(m) « f(m) + g(m)) and by 

exp in the semigroup of all its subsets with the addition de­

fined by 

A + B « 4f+g \ f e A and gcB}. 

By [5J
f
 for every commutative semigroup (S

f
+) there exists a 

homomorphism h$(S
f
+)—.w exp N such that 

(i) card M • & card S% for each s c S
f
 card h(s) « 

« &Q card S| for every seS and every feh(s)
f 

f(m)4*0 for infinitely many m&M, 

(ii) if S = M ' then h(s)nh(s') « 0. 

Let C be a Cook continuum, i.e. a metrizable continuum such 

that for any subcontinuum Kc C and any continuous map c*K—> 

— y C
f
 c is either the inclusion map or a constant, see E3J* 

Let 4K \ n « 0
f
l

f
... 9oo} be a pairwise disjoint system of 

non-degenerate subcontinua of C, so if c:K_—> K_ is a oonti-

nuous map then either n - m and c is the Identity or c is a 

constant map. For every map f:H—>H put 

K(f) - TT.K*
( n )

, 
m,GN n 

Д(n) where K ^
n ;
 is the product of f (n) copies of K

Q
 (if f (n) • 0

# 

then it is a one-point space) and TT denotes the tcountable) 

product. By L43
f 
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if f f g j N — * H and f 4-gf then K(f) is not homeomorphio 

to K(g). 

2. Proof of Theorem 1. Let a countable commutative se­

migroup (Sf+) he given. We find a homomorphism h*(St+) — • 

—»*exp TSr such that (i) and (ii) from 1 are fulfilled. Since 

If * T( § > , — > K * ' i * » * » f $ m — ^ ° ^ m ^ i s supposed to be non-emptyf 

we choose Y in it. Let^K^I n « 0flt...f oo\ and K(f) be as 

in 1. We denote Y x K by Z and for every se S define r(s) as 

a coproduct (we denote coproduct in the class of all topolo­

gical spaces by 11 ) of mQ copies of the space 

The properties of T and (a)-(d) in Theorem 1 guarantee that 

r(fl) 6 T . It is easy to verify that r(s+s ) is homeomorphio 

to r(s)x r(s ). Hence to prove that -fr(s) I s e S j is a repre­

sentation of (Sf+) in TT t it is sufficient to verity that 

if s + s , then r(s) is not homeomorphio to r(s'). 

Denote by Z(s) the subspace of r(s) consisting of all compo­

nents L of r(s) such that there exists no homeomorphism of 

K w into L. Since Z . I x K w , Z(s) consists of all Z n*K(f) 

with n • 0, i.e. Z(s) is the coproduct of j& copies of the 

space 1 1 K(f). We define analogously Z(s') f hence Z(s') is 

a coproduct of &^ copies of 1 1 K(g). Since h(s)nh(s') • 
° a, £1*0') 

• 0 and K(f) is not homeomorphio to K(g) for f + g f Z(s) is 

not homeomorphio to Z(s ) f henoe r(s) is not homeomorphio to 

r(s'). 

3* Proof of Theorem 2. The method of L6Jf simplified 

by A. Ulehlova is used* Let a seventuple oc, ,..# f aC« be gi­

ven such that C. ... is non-empty, choose a connected 

1** * * •e^r 
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space Y in it. Let a finite cyclic group cn » { 0,lf.••fn-l ] 

be given (the operation of cn is the addition modulo n). We 

construct the spaces {r(s) | s€c J as in ? (by means of the Y 

chosen in C ) i.e. r(s) - JJ AZnxK(t))v. 

Let X *• X u-£fi be a one-point compactification of the spaci. 

X » r(l). Then X is in C . ^ . Let f :X n + 1—> S be the 
£ * . - , • • • f G\r» 

continuous map which maps Xn+-* « r(n+l) ci r(l) onto X as a ho-

meomorphism and sends X n + \ X a + 1 to £ . Let us denote by V 

the inverse limit of the chain 

A yn+l-r4". -f(i*KL>2 -j£^_ -fCn+lP X-e-X- X"TV-3- '£*«"-•-> ̂ 3 xv 

<- .— 

Then V is in C , . and is homeomorphic to yn+1
# The uni-

Ot-t t • • * t^V? 

on of all closed-and-open components of V is* homeomorphic to X. 

Since the spaces XfX f...fX
n are pairwise aon-homeomorphic, the 

spaces VfV f...fV
n are also pairwise non-homeomorphic and they 

form a representation of cn by r(0) « V
n
f r(i) » V

1 for i * 

• lf•..fn-l. 
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