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REPRESENTATION OF SEMIGROUPS BY PRODUCTS OF TOPOLOGICAL
SPACES WITH PRESCRIBED CARDINAL FUNCTIONS

NGUYEN VAN VINH

Abstract. Given an m-tuple @1,..., énlof cardinal func-
tions and an m-tuple of cardinal numbers L ypeeey Ly, WO ex-
amine when there exists a space X homeomorphiec to 13 but
not to X2 such that @i(x) = «; for all i = 1,...,m. We show

that under some natural assumptions about the cardinal functi-
ons, such space X exists provided that there exists at least
one space Y with éi(Y) = ocy for all i = 1,...,m. A more ge-

neral setting of representations of commutative semigroups by
products of spaces is investigated.

Key words: Representation, semigroup, topological pro-
duct, cardinal function. ! !

Classification: Primary 54B10, 54H10
Secondary 20M30

I. Introduction and the Main Theorems, Let (S,+) be a
commutative semigroup, ¥ a class of topological spaces. A
mapping r:S—> X such that for all 81+8,¢€ S

(1) r(sl) is homeomorphic to r(sa) iff s = 8, and

(11) r(sl + 8,) 1s homeomorphic to r(sl)x r(ez)
is called a representeation of (S,+) by products in ¥ .

Representations of commutative semigroups by products
of topological, algebraic or relational structures have been
investigated by many authors, for a survey of topological re-
sults see [7].
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In the present paper, we investigaie representations of
semigroups by products of topological spaces with prescribed
values of some cardinal functions. The notion of a cardinal
function is as in [2] or [ 3], 1.e. an arbitrary function from
the claass of topological spaces into the class of all cardi-

nal numbers such that homeomorphic spaces have the same value,

Given & class T of topological spaces, an m-tuple of car-
dinal functions(l)l,... ’ ém and an m-tuple of cerdinal numbers
dl,...,ocm, we denote by

(P~ %yseeey & —> )
the class of all spaces X €T such that q;i(x) = o¢y for all
i=1,eee,ms The aim of the present paper is to prove the two

theorems below.

Theorem 1, Let T be a class of topological spaces con-
taining all metrizable continua and closed with respect to
homeomorphic images, finite producta and countable coproducts
(= disjoint unions as closed-and-open subspaces). Let 471,...
ooy §>m be an m-tuple of cardinal functions such that, for
every 1 = 1,2,...,m,

(e) & (X) z &, for every space X& T and @i(K) = a5

whenever K is a metrizable continuum;

(b) q:i(x,d{) = q;i(x) whenever Xe T and K is a metriz-

able continuumg

(c) Qi(.gh X)) =2 ®;(X) (where 1l denotes the

coproduct), whenever X,eT for all n = 1,2,..0 ,

() &,(x) = <1>i(xn) for ell n = 1,2,3,.., and all XeT,

Then for every m-tuple ocl,..., ocm of infinite cardinal num-

bers every countable commutative semigroup has a representa-
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tion by products in the class
T=T(d; > seen, & —> o)

provided that the class M is non-empty.

Remark. It ieg = -"i-k.:vn tha¢ - .g. bthe welght, o5 -weight,

net weight, deusity, ciaracter, pseua--haracier fulfil (a)-(d)
abovs, se the Theorew 1 can be applied on them; the class T

oan he chosen to be e.g. the class of all topologicel spaces,
all T1~spaces, Heusgdorff, resular, completely regulasr, wetriz-
able and many others., Unfo. junately, the ~Tass of compact spa-
ces doeg vot £it in it, this class is not si:red with respect
to countabie disjoint unions. We present he:rz: anoiher theorem

for the compact Hausdorff spaces.

Given a seventuple 061,.._.,067 of cardinsl numbers, let
v denote by

T

=
a.”,.,‘df:’

Comp (w —>olyy T3>k, 00 —~a-oc3,d >y,
;\r/——>d,5, Y—>Lgy t —~>o{,7

the clasg of all compact Hauasdorf? spaces X such that 1its
weight w(X) = o, or -weight n(X) = =<5, net weight nw(X) =
= o3y density da(X) = %y character 7C(X) = Lg, pseudocha~
racter Yy (X) = ¢, and tightness t(X) = oc7.

Theorem 2. For every seventuple OLyserey Xg of infinite
cardinal numbers, every finite cyclic group has a representa-

tion by products in the class ¢°‘1 «, Provided thdt this
rooeoly

class is non-empty.

Remark. If {r(0),r(1)} is a representation of the cyc-
lic group ey = 10,1}, then the space X = r(1) is homeomorphic
to X2 r(1+41+1) =2 (1), but not to r(0) = r(1l+l) =~ X2, Hence
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the result mentioned in the ebstract is obtained as the ape-
cial case of Theorem 1. The Theorem 2 can be also applied on

the group Coe

II. Proofs of the Theorems

l. Let N be the additive semigroup of all non-negative
integers, Nu the semigroup of all functions from M into N with
the pointwise addition (i.e. (f+g)(m) = f£(m) + g(m)) end by
exp Nu the semigroup of all its subsets with the addition de-
fined by

A+ B ={t+g| e A and ge BJI.
By [5], for every commutative semigroup (S,+) there exists a
homomorphism hs:(S,+) —» exp ™ such that

(i) card M = %, card 53 for each s€ S, card h(s) =

= X, card Sy for every sc S and every fe¢ h(s),
£(m)4= 0 for infinitely many me Mj

(11) 1f s4s” then h(s)nh(s’) = @.

Let C be a Cook continuum, i.e. a metrizable continuum such
that for any subcontinuum Kc C and any continuous map c:K—
—>C, ¢ is either the inclusion msp or a constant, see [1l].
Let {K | n = 0,1,...,00} be a pairwise disjoint system of
non-degenerate subcontinua of C, so if czxn——> Km is a oonti-
nuous map then either n = m and ¢ is the identity or ¢ is a
constant map., For every map f:N —>N put

K(£) -m,.rerN Ki(n)o
where K{;(n) is the product of f(n) copies of K, (if £(n) = O,
then it is a one-point space) and TT denotes the (esountable)

product. By [41],
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if £,g:N—> N and f+g, then K(f) is not homeomorphioc
to K(g)e.

2. Proof of Theorem l. Let a countable commutative se-

migroup (S,+) be given. We find a homomorphism h:(S,+) —>
—> exp Nn such that (1) and (ii) from 1 are fulfilled. Since
T =d)—>%q,e00y $—> <) 1s supposed to be non-empty,
we choose Y in it, Let {K |n = Oylyeeep 008 and K(f) be am
in 1. We denote Y<K Dby Z and for every sc S define r(s) as
a coproduct (we denote coproduct in the class of all topolo-

gical spaces by 11l ) of %, copies of the space

11 n
neN,{cNM A K(f)n

The properties of T and (a)-(d) in Theorem 1 guarantee that
r(s) ¢ ‘T . It is easy to verify thet r(as+s’) is homeomorphic
to r(s)x r(s’). Hence to prove that {r(s)| sc S} is a repre-
sentation of (S,+) in T , it is sufficient to verity that
it s:l:a', then r(s) is not homeomorphic to r(s”).

Denote by Z(s) the subspace of r(s) consisting of all compo=-
nents L of r(s) such that there exists no homeomorphism of
K, into L. Since Z = ¥Y<K_ , Z(s) consists of all 2" K(f)
with n = 0, i.e. Z(8) is the coproduct of s, coples of the
spac|4a(~)K(f). We define analogously Z(s’), hence Z(s’) is
a coproduct of X  copies of &“')K(s)- Since M(s)n h(s') =
= ¢ and K(f) is not homeomorphic to K(g) for f4g, Z(s) is
not homeomorphic to Z(s’), hence r(s) is not homeomorphic to

r(s”).

3. Proof of Theorem 2. The method of [6], simplified
by A. Ulehlové is used. Let a seventuple Ksesercty be gl-

ven such that € is non-empty, choose a connected

dlyooo".‘q
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space Y in it. Let a finite cyclic group cn =f0,1y0esyn=1%
be given (the operation of cn is the =ddition modulo n). We
construct the spaces {r(s)| se cn§ as in » (by means of the Y

chosen in ’£7) i.e. r(8) = (Zn><K(f))k.

A
LS TARD S meN{ehin)
LetT = X v{f}l be a one-point compactification of the space

X = r(1). Then X is in chl,....x7' Let £:3°*1_ % be the

continuous map which maps D Gt r(n+l) =2 r(1) onto X as a ho-
meomorphism and sends XPtI\x*1 4 £ .« Let us denote by V

the inverse limit of the chein

+4 2
FA el 4T ) g ge)d

sen

Then V is in C(i . 80d¢ 1s homeomorphic to vo+1 1he uni-
1rene ey

on of all closed-and-open components of V is homeomorphic to X.
Since the spaces x.xz,...,xn are pairwise aon-homeomorphic, the
spaces V,Vz,...,Vn are also pairwige non-homeomcrphic and they
form a representation of c by r(0) = V2, r(1) = v for 1 =
= 1yeeeyn=1,
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