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ADJACENCY MATRIX EQUATIONS AND RELATED PROBLEMS:RESEARCH NOTES

MACIEJ M,SYSto

Abstract: The purpose of this paper is to discuss some
generalizations of the notion of regularity in graphs which
are derived from matrix equations involving adjacency matri-
ces.

Key words and phrases: Adjacency matrix of a greph, de-
gree sequence, [ -degree sequence, matrix equetion, regular
and semi-reguler graphs, spectral technique.

Clagsification: 05C50

Let (h (k>1) denote the class of all graphs such that
G e (}yk if there exists an integer constant r for which K=
= r1 holds, where A is the adjacency matrix of G and 4 deno-
tes the vector of 1°s. Evidently, G e le if and only if G is
regular and Q}a congists of regular and semi-regular biparti-
te grephs. For k=3, we have Gy = G, 1f k is even and G =
= Q}l if k is odd.

In the class of directed graphs, only some partial solu-
tions of the equation 254 = r1 are known.

Some other matrix equations are also studied.

Let G = (V,E) be a graph and d(v) =Lb%%hrd(u), where ['v
is the set of neighbours of v; dn(v) is called a [-degree of
v. Evidently, there exists an integer r such that dp(v) =r
for every vertex v of G if and only if G € Qyz. In the last
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section, we cousider a problem of finding when a sequensce ef n

integers forms &« ["~dagree sequence of some graph on n vertices.

1. Equatige A¥1 < r4 in the claes of gimple graphs

Let G be a simple graph (i.e., a symmetrie graph with-
out loops and multiple edges) and A denote its adjacency ma~
trix, It 17 = (1,1,...,1) and dT = (d;,4,,...,d,) dencte
respectively the vector of m cnes mnd the degree gequence of
G then we have evidamtly Ad =d .,

A graph G is yegular if &(¥X = r for every vertex v of
G, that is 12 A4 = 1 . A gréfkP 1s called semitegular of
degrees p, q if & is bipartise; eadh vertex has degree p eor
q, and each edge cemmecis a 'mrtt’:«f of degree p with a vextax
of degree q.

Plonke [6] end Rema Chandrsn {8) have considersd the fol-
lowing generalization of the regularity in graphs. Let

a.(v) g'f‘-wd(w).
where ['v denotes the set of meighbours of v. Then a graph G
is M=-regular (Plonka) or NDS regular (Rama Chandran) if the-

re exists a positive integer r such that dr.(v) = r for every
vertex v of G, They proved the following theorem

Theorem 1.1 ([6] and [8]). A graph G is |"-regular of
degree r if and only if every connected component of G is ei-
ther V= regular or semireguler of degrees D, q, where p.q =

=r, O

One can easily notice that G is ["-regular of degree r
1f and only 1f A°A = n4 , since A-A4 = Ad.

- 212 -



The main purpose of this mection is to characterize sim-
ple graphs which satiafy

(1) 251w r4 for some positive integer r, where k>3,

Let 4, (kz1) dencte the class of all graphs whioh sa~
tisfy (i), Hence, Q’l is ths class of all regular graphs and
(}? consigts of ['-regular gruphs. In terms of graphs, G be-
longs to Ccfk 1f the number of peths of length k outgoing from
a8 vertex v iz the same for all vertices of G . Omne cam easi-
1y check that G, & G5 since Ky 5 € Gp and K 4 ¢ G4+ Seme
ralations between the classes L—?k’ k=1 can be obtelned by sim-

ple matrix calculations.

Proposition 1.1, For every k21, G € G " Gy g if and
only if G is regular.,

Proof. Let G be g-reguler, i.e., A1 = 87 . Therefore
A - ALy 2 aklgg Lokl el = 651 ena A¥4
Bk+1’3

. Otherwise, if G ¢ G N G4y then there exist two
positive integers r, and r, such that A5y - 1’1'ﬂ and A¥*14
= r,1 . Hence, AK*L) LAk = A-rl'ﬂ = rjA1 and T4 =

T
= rA4 . Since A is an integer matrix, we obtain Al = }%’ﬂr
T,

where -1% is & positive integer. Therefore G € G,. O

By similar calculations one can prove the following pro-
perties of G, (kZ1),

Propogition 1.2. If G eGy n Gy thenGe Gyyye O

Proposition 1.3. C@'},C Cé'k,ﬂ for every k = 2,3,... and
£ - 2,3,..0 « 0

Proposition 1.4. Ge G, n Qg 1f and only if Ge G .,
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whers m = GCD(k,£).

Proof. If Ge(G NGy then let us assume that [ = Kk
snd apply the Euclid algorithm to £ and k (= kl)=
L = "1k1 + ka, where k2< kl'
k) = ‘gkz + k3, where k3< ks,

kp = Boakperr
Ky, = 0OD(k, £).
From the first equality, i1t follows that

m. k. +k, k, mk m, k
P T S N R e rklA 24 » Where T, 1is 8
1 1

kl k2 my
econstant such that A “4 = rkl'ﬂ . Hence, A “4 = r/r 1 and
1
r/r, is the integer where A%0 = x4 . Therefore Ge Gy o
ky k,

Iterating this process we obtain G egkz, Ge(}ks,.... G e

e‘?ka = & Gep(k,p)°

Otherwise, if G "C*GCD(]:,Z)' then, by Proposition 1.3,
G e(a.k and G € G, , since there exisgt integers k’ and £’ such
that k = GCD(k,£ )« k eand £ = GCD(k,£)-£ . O

Corollary l.1. Gy C Gp 1if and only if Gy =
= Céfc;cn(k,}z)' .

Notice that the corollary is not equivalent to say that
X = GOD(k,£).
Let £= 6, and x = 2,3. The above propositions show that
G10%21%3C G and G0 G = Gy . We know also that
93 + G ¢, since otherwise G, C 93 contradicting the ob-
servation that K, ;e G, - &% 3+ It suggests therefore that
maybe 96 = 92 and, in general, 922 = 92, for Lz2,
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Weties that if 1% holds, then, by the corollery, gk = g'1
for every odd integer k, since gk = 9‘2]: = 9—2-

This conjecture wag proved by Cvetkovie and Doob [1] by
using spectral technique [2]. Notlee that if for a symmetrie
0-1 meirix A, there axist integer constants k and r such that

A¥f = r1 then r is an eigenvalue of A* and 1 1s an eigen-

|3

vector of AF belonging to the eigenvalue r.

Theorem 1,2. For k1, G, = G, 1f k 1s odd, and G =
= (4, 12 k 15 even, O

It would be interesting to prove this theorem without u-
sing spectral technique, either by metrix caleulations or by
applying some graph-theoretic results.

2. QOther matrix equations. Lam [3] has considered the
following equation

(2) A¥ = xI+ B,

where A is a 0,l1-matrix, I denotes the identity matrix, J de-
notes the matrix with all entries equal to 1 end k,x ,3 are
integers. He proved that if A satisfies (2) then it has con-
stant row and column sums. Hence if A is the adjacency matrix
of a pimple graph G and satisfies (2),them G is regular. The-
refore, the equation (2) with a symmetric matrix A produces
only trivial solutions of (1).
Let 47, (v) = 4.(v) + a(v) and a7, (v) = 4 (V) - &(¥).

A greph G is I'-regular (I “-regular) of degree r if d‘:; (v)=
= r (d7.(v) = r, respectively) for every vertex v of G. Plon-

ka [7] has proved that G is *-regular if and only if G is

- 215 -



regular. However, for [~ -regular graphs, only some partial cha-
racterizations have been obtained [7] and degree sequences of

such graphs have been studied in [4).
Notice that G is I ‘*~regular if there exists an integer r

such that

(3) (A2 + )1 = x4

holds, and G is [ “-regular if there exiasts an integer s such
that

(4) 2 -1 =81

holds.

One may again generalize r'+-rogular graphs and ask for
graphs which satisfy the equation

(5) T Lt RO Y |

for some integer r, In terms of elements of graphs, G satis-
fies (5) if and only if the number of paths of length not gre-
ater than k outgoing from a vertex of G is the same for all
vertices of G. We conjectured that only regular graphs satisfy
(5) for every k=1, and it has been settled in the affirmative

by B. MoKay [5) using again spectral technique,

3. Bquation A¥1 = r4 in the class of digraphs. Let D =
= (V,B) be a digraph, where Ec V<V, One mey now ask for the
solution of the equations,(1),(3),(4) and (5) when A 1s an ad-
Jaeency matrix of a digraph, that is, when A is an arbitrary

0-1 matrix.

Let 9, denote the class of all digraphs such that Ded
1f 1ts adjacensy matrix satisfies (1). There are many different
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types of digraphs in fbk and a complete characterization of
) x Seems to be very difficult.

B. McKey [ 5] found the complete solution of (1) in the
class of strongly connested digraphs. A digraph D is regular
gyclically r-partite if V can be decomposed V = Vlu qu...
+ee UV, where '1’"3 =g, V1+¢ (i, J = 1,2,¢e.,r), and the-
re exist integers Ry sMspeceyiy, such that for every vevi and
i=1,2,...,r we have

10 (ivd = V;)' . { mg, 17 § = 1+1 (mod r)
0, otherwisge,
Every regular digraph is regular cyclically l-partite and re-
gular oyclically 2-partite digraphs are exactly semiregular

bipartite,

Theorem 3.1 (B, McKay). If D is strongly connected then
D eka if and only if D is regular cyclically r-partite for

some r|k.

Fig. 1

Figure 1 shows a digraph Dn which is not strongly con-
nected and A%4 = (n-2)1 for every n>3. Every strongly con-

nected member of £Dk can be used for a similar comstruction.
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4. ["-graphicsl sequences. It is one of the classical
problems in the graph theory to ask when a sequence of n inte~

gers d= (dl'd?'“"dn) is graphical, i.e., constitutes the
sequence of vertex degrees of a graph, which is usually assum-
ed to be from a restricted family of graphs.

In a similar way, we say that d'= (di,dz',...,d);) is =
graphical if there exists a simple graph G such that d’ 1s the
sequence of ["-degrees of G. The problem of finding when a se-
quence of n integers is [ -graphical secems to be very hard.

We present here only some comments.

Pirst notice that if dl”is " -graphical then

S 342 Z 2 -
33 =y e (347 - 2,70 a4y,
where ol = (dl.dz,...,cln) is the degree sequence of a graph
having ("-degree sequence dl”-
Therefore, if d ~ is "-graphical then it has the follow-

ing properties:
it 4
(a) R 'L§4 d; is even,

(b) R can be decomposed into n squares of integers 4,

dspeeeydy,
(¢) d = (dyydy,e..,d,) is graphical,

It is not difficult to find a non [ -graphical sequence d’
which satisfies (a) - (c). For instance, let di” = (4,2,2,2).
In this case R = 10 and there is only one decomposition of 10
into 4 squares, namely 10 = 22 4 22 + 12 + 12. The sequence
(2,2,1,1) is the degree sequence of P4 which however has the
" ~degree sequence (3,3,2,2), different from the sequence we
atarted with, Notice that in the class of multigraphs with
loops, the sequence (2,2,1,1) has a realization (consisting
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of P3 and a loop) with the givem [|'-degree sequence.
Therefore we have to add the following requirement

(d) the sequence d has a reslization with {"-degree
sequence dl’.

Notice that for every even integer R there exists a I -
L d ’ » 4
graphical sequence d’ = (dy,d5,...,d;) such that ;24 =R,

=1

It is sufficient to take n = R and 4; = 1 for every i = 1,2,
«eo,ny O’ corresponds to the graph on n vertices and n/2 se-
parate edges. One may ask now which even integers have con-
nected realizations. For instance if R = 8 then we have

R=12+12+12+12+12+12+12+12.

R =22 4+ 22,

R =22 +1% +12 4+ 12 4+ 12,
and only the first decomposition corresponds to a graph. The-

refore, 8 has no connected realization.

It can be easily proved that if dl” is M-graphical then
the number of 1's in d” is even and they can be removed from
dl”, since dl” is M-graphical if and only if d° without an

even number of 1's is [ -graphicel.

Elements of d” equal 2 may occur in two configurations
shown in Fig. 2, which however cannot be recognized from a
" -degree sequence, If G is assumed to be connected and has
at least four vertices, then only 2(b) may ocour, that is, e-
very vertex of ["-degree 2 ig pendant and adjacent to a ver-

tex w such that d(w) = 2 and 4 '(w) = 3.

Y2
/\ 4
71 VB w
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We have been adle to emumerate all graphs with [M-deg-
ree sequence d” = (d{,dé,...,d;) satisfying d{é-s (1 =1,2,
veesn). Por instance, if d££=4 (i = 1,2,...,n) then every
component of a graph with ['-degree sequence d” 18 one of
the graphs: a simple path, a simple cycle, K1'4, and P4 with

an edge attached to a non-pendant vertex of P4.

Let us return to the conditioms (a) - (d). The first of
them can be trivially checked. The second one, however, is
not trivial at ell. Pirst, some integers, ususlly of small
value, cannot be decomposed into a fixed number of squares
of integers. For instance, no sequence of five integers with
the sum equal to 18 is ("-graphical since 18 cannot be decom-
posed into 5 squares of integers. There are several such re-
sults in the number theory {see for instance [9]), which cen
be used to eliminate some sequences of integers as non |-
graphical. Secondly, if the sum R is decomposable into squa-~
res then the number of decompositions can be very large. In
this case we have to find whether among the decompositions
there exists at least one which gives a graphical sequence
cdompatible with the given ["-degree sequence. However, neit-
her in the number theory nor in the theory of graphs there
exists a result dealing simultaneously with the decompositi-
on of an even integer into squares of integers and graphical

realizaetions of the sequence of these integers.

We have not succeeded (even restricting our attention
to trees) in finding for ["-degree sequences counterparts of
d-invariant operations which can be applied to degree sequen-
ces or to graphs, for instance, the removal of a vertex of

meximum degree (as in the theorem of Havel end Hakimi)
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and switching two mutually non-adjacent edges (see for ins-
tance [10]).

Figure 3 shows that non-isomorphic trees can have the

pame ["~-degree sequence.

] ] 1
] I

Fig. 3.

It is known that 1f di= (d),d540.0,d ), 4,21 (1 = 1,2,
ese,yn) and D§4 d; = 2(n-1) then every realization of d in
the class of connected simple graphs is a tree. It does not
hold however for ["-degree sequences. For instance, the sequ-~
ence of five 4 s corresponds to K1,4 and to Cs. We conjecture
that if a ["-degree sequence d” has a tree realization then
each such a realization of d’ has the same mumber of pendant
vertices. It is easy to check that this is not true for dis-

connected realizations of ["-degree sequences.
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