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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

24,1(1983)

METAMATHEMATICS OF THE ALTERNATIVE SET THEORY II!
Antonin SOCHOR

Abstract: In the paper we continue in the investigation
of metamathematics of the Alternative Set Theory (cf. [S 1]

and [S 2]). We show independence of axioms of this theory and
some basic facts about models of this theory in ZF.

Key words: Alternative Set Theory, independence, inter-
pretation, consistency, semantical model, ultrapewer.

Classification: Primary O3E70, O3H99
Secondary O3H20

The alternative set theory (AST) as a formal system of
axioms was introduced in [S 1] where even an introduction te
the whole series can be found. We use the notions defined in
(V1 IS 1] and [S 23,

In the eighth section we show that each axiom of AST is
independent on the others, furthermore we are going to prove
that AST is not finitely axiomatizable. We introduce the axi-
om of elementary equivalence and show its undecidability in
AST.

In § 9 we deal with models of AST in ZF. In particular
we show that AST is & conservative extension of ZFFin and
thet FN corresponds in some sense to metamathematical natu-
ral numbers. The reduction of every model of AST to sets gi-

ves ur a recursively saturated model of ZFpj,. At the end
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of this section, undecidability of the axiom of reflection is
chown,
The last section is devoted to some open problems.

§ &, Independence of the axioms of AST. Let us start

ta

with two trivial observetions concerning independence., If we
vant to violate the axiom of extensionality, it suffices to
add a new "copy” of a class. For violation of the axiom of e~
iiztence of sets it is sufficient to assume that there is on-
iy one set - a model of such a theory is obvious. The trivia-
lity of these statements points out that these theories dif-
fer essentially from AST.

To prove that the schema of existence of classes is in-
dependent even on axioms A 21 and A 22 we show that AST is not
finitely axiomatizable. For this purpose we are going to use
results of [M] and we interprete Montague s symbols ¢ ) and
D gefining < XY= {X}" and {X)peensXp 310 {Yy,000,Y 3=
= {Xl,...,kn, Y.‘l,...,Ym}"1 . Thus in TC we can prove all Monta-
gue’s axioms (for "finite-, non-empty sequences of classes")
from the page 54 [M] and hence if T is a theory (of the lan-
guage of set theory) stronger than TC then by the third theo-
rem of [M], for every To (metamathematically) finite part of
7, ZFFin + Con(T;) is interpretable in T. According to the
rietatheorem of the last section we have T + Cong( ?B) for e-
very recursive T, i.e. we get that T is "reflective"., By Go-
741'g theorem T cannot be finitely axiomatizable (cf. also

"vanrem 4 [M]1). In particular, we have demonstrated the fol-

* aing astatement.



Metatheorem., AST is not finitely axiomatizable.

The subject of this section is to demonstrate independen-
ce of the axioms A 4, A 5 and A 7 on the other axioms of the
alternative set theory. The independence of the axicm of choi-
ce was recently proved by A. Vencovskd (see [Ve 3]).

Let us start at first to investigate the axiom of €b~-
class. The theory KM~ + V = L& V = HC can serve &s a sirength-
ening of the theory AS’I‘_4 + 1 A 41. Although the first theory
differs essentially from AST (admitting actually infinite szets
from the Cantor’s point of view), it has an interpretation in
AST according to § 6 and therefore the axiom A 41 cannot be
proved in AST_4 (of course, we assume that AST itself is coun-
sistent in the whole of this section).

To construct an interpretation of A.ST_4 + A 41 + 1A 4
in AST it is sufficient to construct an interpretation of the
first theory in AST + A 62 (cf. § 6). If 2 is a constant deno=~
ting a nontrivial ultrafilter with FN=Z then the formulas

Cls ¥ (X) = dom(X) = FN

X¥e* Y*={n; X"{nle Y"ini} m Z

X*¥ =¥ Y*¥= {n; X{n{ = Y"{nii~ 2

d* "{ny = n
determine an interpretation of AST + 1<d + 2<d + ... + A€ FN
in AST + A 62 (k being the formalization of a metamathematical
natural number k). To prove this it is sufficient to show (by
metamathematical induction; for the induction step concerning
the ex‘istential quantifier we use A 62) the following form
of Lo8 s theorem: For every formula @(Zl,...,:’.k) we have
:§*(X1,...,Kk =<n; & (xl"{n's,...,xk"{n}) Y m Z.

Let us proceed in AST + 1< d + 2<d + ... + de€FN. Since
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ZFpy, 18 not finitely axiomatizable (see [M] and [Mol) the-
re is a model O, satisfying all Z?’Fin-axioms which are

smaller than 4 and such that there is @ e Z?’F so that

in
= 19 . Then ( is en interpretation of AST_, + A 41 +
+ A 4 in AST + T<d + 2<d + ... + deFN. The compositior
of the interpretations mentioned above gives us an interpre-
tation we looked for and hence we have demonstrated the fol-

lowing statement.

Metatheorem. There is an interpretation of AST_4 +

+ A 41 + 1A 4 in AST.

Now, let us deal with the prolongation axiom. By § 4 we
know that AS'I'_‘5 + 1A 52 is equivalent to KMFin and therefore
it has an interpretation in AST and hence the axiom A 52 is
not provable in AST_,).. The theory AST_S + A 51 is not inter-
pretable in AST_S + A 52 according to § 7 and thence one can-
not prove A 51 in AS'I‘__5 + A 52, It remains to show an inter-
pretation of AST_s + A 51 + 1A 5 in AST,

The symbol DefI denotes the class of all sets definable
using parameters from X (see LV 1]). If <« & N-FN then the
models 0! = {Def?(d’), EnDef%(cc)?lq' and {V,E}"l are elemen-
tarily equivalent. Thus according to the fifth section, @
is an interpretation of AS’.P_5 in AST. Moreover,

(VXSFN)(AxeP(x))(xNFN = X)
and therefore we get A 519‘ . According to A 4 (in detail %o
formal replacement schema) for every ¢ € FL there is the
greatest : which is definable by ¢ using parameters from
f( ..). Further Defig( _‘):; N has no greatest element and hence

there is a countable subclass X of Def—I—,(\;)u N which is cofi-
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nal (i.e. UX = U(Def—F(cc)nN)). From this observation the
formula 1A 50' follows.

To investigate the axiom of cardinalities we proseed in
AST o + TV A T. The class on*< {y; ¥ = "y 15 an ordinal"{
(cf. § 6) is uncountable and E¥n On* is a well-ordering such
that every its segment is countable. If < is a well-ordering
of V then every well-ordering of on¥ is isomorphic to
<Piy; y<x3 for some x (since On¥ and V have different car-
dinalities). Thus every well-ordering of on* can be coded by
a set. By [M-S] (cf., § 6) there is an interpretation x of

KM~ + A 6 + A 7 in our theory such that every X -class can be
coded by a set and hence there is a model of KM~ + A 6 + A 7
in AST_7 + 7A 7. Since there is an interpretation of AST in
KM~ + A 6 + A 7, we gee that YT has a model in AST o, +
+ 1A T and therefore by § 3 we obtain that the formule
ConF( aA<9’) is provable in AST_7 + 7A 7. Thus according to
§ 7 there is no interpretation of AST 4 + 1A 7 in AST,
According to the last result one cannot prove independen-
ce of A 7 on the other axioms of the alternative set theory
using an interpretation in AST. Hence it is necessary to choo-
se a stronger theory for this purpose - e.g. ZF. Doing this,
we drop for a moment our idea of the alternative set theory
as the world of mathematics, nevertheless independence of A 7
will be demonstrated conclusively enough.
In ZF + V = L we can fix constants a, ¢4 =<A,E) so that
A= ZFFin&card( {x3 e xc87) = Hye Let #r be an ultra-
power of 71 w.r.t. a nontrivial ultrafilter on -~ , If 4, k
are elements of A with (%n & - )( 77 k= "d(n) is the n-th

natural number™2 k(n) = a) then card({f; {~ ¥ ged:) -*
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(2 J‘I
£ ¥, = vy < Kz.écard(x) 4 '“2 ° . 44‘2 for every x with

zg,= 48; = ge k., Hence by § 5, 53 1s an interpretation of
AT . 4+ VA 71 in ZF + V = L where & is fixed as described
asove (and Z¥ + V = L has an interpretation in ZF by the fa-
mous Godel s result; see [G]).

In 2F + AC + 2$° = %, we can fix countable X k= ZFp; .
and let & be an ultrapower of (L w.r.t. 8 nontrivial ultra-
filter on @ . We have ( V£)(( Yx)(xg = {g; Hrgetd—>
—> card(x) = K,)v(Ix)(card(x) e @ & xyp = {g; L =ge 13))
(cf, @uge § 3 che. 6 [B=S1), Thus 73 is an interpretation of
AST o + ATL + 1A T in 2F + AC + 2% . ¥, where & is fi-
xed as described above (and ZF + AC + 2$° = K, has an inter-
pretation in ZF according to the famous Cohen ‘s extension;
see [C]).

Let us deal now with the axiom of regularity. We are go-
ing to show that the axiom A 8 is not provable in AST but mo-
reover we shall see that the axioms A 81 and A 82 are not
provable one from the second one. The construction (in AST)
can be done e.g. as follows. Choosing « & FN we put
A ={<ct, >}, AS ={lcc+n,ec) ; ne PN}, AN o P(AD) -
-{4x}; xeAJY, Ay =ULA]: neFN}, By = En(A1)2 v
UL, x>y <oty DT, By = En(Ay)?
Cet4n,cc>); neFN} end O, = {A;,E 3" . Evidently

viec4n+l, ) ,

(LA 01%A 11 and moreover (/?»ilr-A 3%&A 41 since
Uir(V¥x)(xe (b, ?2=%x = <6, 0¢y ) and
(VnePN)( fJL2k=( Yx)(x eob4n, 7= X = {cg+n+l, <> )).
Further U, {ct,cc?eG,ocs and thence O'Llh A 81:
on the other hand for every n>1 we have Cilb:Tra.n(A;l) %

% Set(A;‘) and as a consequence we get 5/11!»—:)\. 82, Further-

- 142 -



more it is xeiA2—> Fin(x) and therefore there is ne x with
(Vne FR)( OL2 = {L +n,x » € X), from which (/l.zl=. A 82
follows. On the contrary A 81 is satisfied in (Ilz trivial-
ly. It %frl ( 56'2 respectively) is a revealment of (I,
( UL2 respectively) then :Bl ( ﬁa respectively) is an in-
terpretation of AST g + 1A 81 + A 82 (AST g + A 81 + 1A 82
reaspectively) in AST by the fifth section.

At the end of this section we are going to introduce an

interesting axiom.

A 9, Axiom of elementary equivalence, FV is elementari-
ly equivalent to V.

Assuming this axiom we are able to prove a great number
of statements and moreover the work in AST + A 9 is much mo-
re similar to the work in the Robinson’s nenstandard methods
(see [Rolor [M~H]) then in the alternative set theory with-
out this axiom, On the other hand, the alternative set theo-
ry with the negation of the axiom A 9 seems very interesting,
‘too. Let us note that A 8 is a consequence of A 9.

For every model (! let Th(Ul ) ={p e-FL; Ak = @i ., It

a =z g‘Fin is revealed then (I is an interpretation of
AST in AST according to the fifth section, furthermore the
formula A 9 holds 1ff Th( Of ) = Th( #2)) (eince FV% 1g 1so-
morphic to FV). There are models (! such that Th(COl ) +
+Th(# %) since otherwise there would be only one finitely
consistent theory stronger than Z & Pin’ ‘which is absurd.
By § 3 we have S k Z g'rin' Since every model has a re-
vealment we see that both AST + A 9 eand AST + 7 A 9 have an
interpretation in AST.
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The néxt theorem shows some statements equivalent to the

axiom A 9; to prove it we use the following lemma,

Lemma. If $(z,2) is a normel formula then in AST for
every class X and every set x there is a revealment Y ef X
such that & (x,X) — P (x,Y).

Proof. Let x, X with ®(x,X) be given and let W {03 v
u{<{y,1>} be a revealment of the class X x<{0iu{<{ x,1>}
(cf. § 2 [S5-V 2]). Thus (V@ € FL)(V & ¢ (x)=V =o(y)) by
the definition of revealment and hence there is an automorph-
ism F with F(y) = x (see § 1 ch. V[L[V]). The class F"W is a
revealment of X according te § 2 [S-V 2] and from the as-
sumption $(y,¥) the formula &(F(y),F"W) (i.e. P (x,F"W))
follows by the second theorem of § 1 ch. V LVJ,

Theorem., Each of the following statements is equiva-
lent to the axiom A 9:

(a) For every « ¢ FN there is a fully revealed endo-
morphic universe A with ASP(ec );

(b) Def = FV

Proof. To prove the implication A 9 —> (a) let «c ¢ FN
be given, By the last lemma we can choose a revealment of FV
with A€ P(< ), According to the definition of revealment, for
every set-formuls ?’(zl,...,zn) of the language FL we have

(¥ 3100eesTn €T @(yprecesdy) = @7 (Fyseeesyy)) —>

—> (Yaj,eeera € A)(glayyeeerty) = 9“(31.....%)).
Since the assumption of the last implication is a consequen-
ce of A 9, A is a fully revealed endomorphic universe by the
eighth theowem of § 1 18-V 1],
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The implication (a) —» (b) is a consequence of the fact
that Def is a subclass of each endomorphic universe (cf. § 2
che V [ V]). The remaining implication follows from the sta-
tement (3 x) @(x) — (3 x€Def) p(x) holding for every set-
formula ¢ of the langusge FL (cf. § 1 ch. V [V]),

§ 9. Models of AST., In this section we are going to
investigate models of AST in ZF, If Ol = AST then we define
Mg =<{x; A= Set(x)}, {{(x,¥>3 A= x€ey&Set(y)i> (re-
duct of (I to sets) and we shall write PN, = c> if FN in

the sense of (! 1is (isomorphic to) @ .

Theorem. If T is a consistent theory (in the language
of set theory) stronger than ZPpin then there is a model
U = AST such that W), = T and FNj = o .

Proof. Without loss of generality we can suppose the
contimuum hypothesis (working in the inner model L(T); cf.
[HE]). Let % = T and let #L'=<{M ,E"> bve the ultrapower ot
W with respect to a nontriviel ultrafilter on <« . Let U
be the model expanding %!’ by all its subsets, i.e. we put
q=d{xcM’; 7(FzeM’) x={y; M =yecz3} and U =
=<{B’uq, E°U(EPMq)> (without loss of generality we can sup-
pose that qnM” = 0), Thus O k= AST according to § D
(L= AT follows from card(M’) = ¥,) and Yy = M =1 vy

the Lo&'s theorem. : /

Theorem. AST is & conservative extension of ZFpin» i.e.
for every set-formula § we have
AST & 1ff zrnn»-@.
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Proof. By § 1 ch. I LV] we know that AST is stronger tham
z’!‘in and therefore the implication frem right to left is evi-
dent, Assuming that a set-formula $ is not provable in Zrl'in'
-1.e, thet 2Py, + -1 1s consistent, we obtain aceording te
the previous result that AST + 7 $ is consistent, too.

The above theorem can be expressed in the way that the
axioms of AST which are not set-formulas do not change the
provability of set-formulas. On the other hand, the axiom A 9
which is neither set-fomula has not the same property. In
fact, by § 3, Cong( Z?’ru) is provable in AST and therefore
Con(Z¥p,,) is provable im AST + A 93 contrariwise we camnot,
of course, prove Con(ﬁrm) in zrun. Further let us note
that according to the last theorem, in AST we can prove less
set-formulas than in mrin though “Tin is strictly weaker
than AST in the sense of interpretability (cf. § 7).

There are models of AST such that their FN is not iso-
morphic to @ s ©.8¢ by the Godel s theorem there is a model
L with OL = AST + ﬂ’ConT( a<¥7 ) (and, of course, there
is no element of which is (code of) a proof of inconsisten-
cy of AST). Nevertheless, the following result shows that in
some sense members of FN give a true picture of c (metama-
thematical natural numbers from our standpoint), namely we
are able to describe precisely enough only those elements of
FN which correspond to elements of @ (cf. also the usual de-

finition of w-consistency).

Theorem, Let & (z) be a set-formula. If AST - (3n e
€FN) $(n) then there is m € <> such that
Ilpyn - (30<cE) d (n).
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Proof. Let us suppose that ZPpip b~ (3 n<E) & (n) for
everym € ¢ , Thus the theory T = zrrmu{'l d@); me @i
is consistent and therefore by the first theorem there is
(L 1= AST such that PN, = c> and such that X = ¢ (B)
for every m € o . Hence AST t4(3IneFN) & (n).

_R_c__ng_r_k;. We have proved that for every set-formla & (z)
from the assumption AST (3 neFN) & (n) there follows the
existence of me o with AST - (3n<®) § (n). In this res-
ult, the class FN plays an importent role - the anslogical
statement without this constant does not hold because the as-
sumption AST (3 € F) § (oc) (d.es 2P, H(Fec)(P ()&
% "o¢ is a natural number”)) does not imply the existence of
m e oo with AST + (3n<i@) § (n) (L.e. ZFp,, + (I n<i) & (n)).
Following the Hijek’s idea we define P (oc) as the property
(Con(ﬁrin) —> o = 0)% (1 ccm(ﬁl?in)'—’ "oc 15 the smallest
proof' of inconsistency of ﬁnn") (proofs being conveniently
coded). In fact, AST —(Jec € K) § (o) and for every m € @
we have AST 4~(3 nem) & (n) since AST l-—Con,(Z gvl‘in) and ?’il‘n?
AST k-Con(ZFy, ).

In the third section we introduced notions related te
notions of finite formula and fermula in AST, There was also
emphasized that more important role in the alternative set
theory play notions with the attribute "finite", therefore
theories are for us subclasses of FL and not arbitrary sub-
classes of L, We did not deal with statements concerning si-
multe.neouaiy notions with the adjective "finite" and without
it, but it is not excluded that such statements can be used
for the development of mathematics in AST. The following re-
sult dealing with consistency of theories can serve as exsmple
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of this approach.

In [Sh 1] (cf. also [N]) it is shown that the theories
0By, end ZPFp, are equiconsistent and therefore dealing with
twe kinds of formaelization of metamathematics in AST we get,
of course, AST |~ Con(ﬁpin) = Con((ﬁFin) and AST - Cong (2 yFin)E
= Conp(G Bp,,)e Let us note that GBpy, has finitely many axi-
oms only and hence AST aiFin = G By s let ZFL,  denote the
first n axioms of zr?in‘

Iheorem. The theory AST + Qon( % Fp,,) + 71 Con( G Bpin)

is consistent,

Proof. We have to prove that in AST the statement
"1 Con( X ?pin)vCon(gﬁrin) is not provable, Proceeding in AST
we have 7 Con( X gl’in) = (IneFN) 1 Con(z_fgin) since x & Z@‘Fin—>
—> (3neFN) xc7P2,  and all proofs are sets (and therefore

Fin

for each proof even the class of all nonlogical axioms occurring
in it is a set), To obtain a contradiction let us suppose
AST (3 nePN) 5 Con(ﬁgin)vcon('(}_ﬁn.in). Thus, according to the
last theorem there is m € @ such that ZPp;, + (In<cm) 0
- Con('Z—I"gin)vCon(a'ﬁpin). Since ZFp; is reflexive (see [M] and
[Mo]) we get ZFy, 1 (¥n< E)COn(Z'fgin) and hence we obtain
ZPpin kCon(GBHn) and since GBpy, 1s equiconsistent to ZFpy,
we get at the end ZFp,, H Con(ZFp,,) which contradicts the Ge- .

del’s theorem,

Remark. The previous theorems of this section can be pro-
ved in theories much weaker than ZF (e.g. KM~ + "HC is a set"
is strong enough). The crucial point of the previous conside-

rations was that the ultrapower construction was available,
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i.e. that subclasses of ultrapower were sets. Contrariwise
in AST (supposing its consiatency) we are not able to prove
analogical statements e.g. in AST one cannot prove neither
the formula

(Vg e FL)(" @ is a set-formula" —> (( CLQ’G"OF_— @)=

=(2F. = $N)
(since AST ~Cong(A ST ) and AST + Cong( Z?ﬁ.in )) nor the
formula

(Vg e FL) (" @ is a set-formula" —» ((AST + @) =

= (ZFpy, —2)))
(Con(ffpin) is provable in AST + A 9, according to the last
section there is an interpretation of AST + A 9 +
+ 1 Conp( @A ¥T’) in AST + 11Cong( A ST’ ) and the lastly men-
tioned theory is consistent by the Godel ‘s theorem).

As a consequence of the first theorem of this section we
see that for every Wl = ZPpin there is e model (! = AST such
that ’){)m is elementarily equivalent to 99 , The following
theorem shows that this statement cannot be strengthened; the-
re are models of szin which cannot be expanded to models of
AST. For the definition of recursively saturated models see
e.g. [B-S]; the following result for FN,= « was indepen-
dently proved by M. RaZkovi¥ cf. [Ral.

Theorem. For every OL = AST the model %), is recursi-
vely saturated.

Proof, Let &87,...,8, €A with N = Set(al)&... Set(a,)
be given and let " be a recursive nonempty set of formulae
(of the language of set theory) with one free variable and
with constants @;,...,8 only. Por every set-formula ¢ there
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is x,; A 80 that for every x, the formula A = § (x) =

=0 = erQ holds. Evidently every Xg 1s set-theoreti-

cally definable in the sense of C{ . Supposing that ' is fi-

nitely satisfiable (i.e. that for every &,,..., Qk el we

have Ol &= ti fa) ...nxQ 4= 0) we have to show that there is
1 £

ecAwith (VPe M)A = a€ Xy o Since M is recursive, the-
re 18 X€ A such that for every set-formula ¢ we have

delM=CBne)d = xI"hi = X5
(and such that for every m € ¢> there is a set-formula $ with
Ol e IR = IQ )e

If PN, = o> then the system {X3 3 $ e "3 is a count-
able system in UL and therefore it is suffiecient to use re-
sults of § 5 ch. II LV].

Supposing FNU(, # ) we can assume moreover (/I |= dom(X)e
€ PN, Thus we can choose .£ € A with

A= NEXk}; k< LIHOK(L = dom(X)vN{X"{k}; k< Li= 0)

because in AST every XSFN has the first element., We have
(Vmew) N =< because UL k= N {X"{k%; k<M 0 and we

are done,

At the end let us deal with the axiom of reflection (ct.
[S-V 31). Every codable reflecting system determines in AST
e model of QYT and thence we get Cong(A ST ). Therefore
by the Godel s theorem AST with the negation of the axiom of
reflection is consistent,

On the other hand, let assume V = L and let 771 = ZPpin
be countable and let OL =<A,ED be the model of AST expand-
ing the ultrapower of Wl by all its subsets (cf. the first
proof of this section). Thus we are able to choose Bc A so

that B is closed under all Skolem functions, B contains sall
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UL -sets and so that card(B) = ¥y+ B i# & reflecting system
in the sense of UL and it is (! -codable since card(B) =
= card({x; Ul =Set(x)}) and since all subsets of the ultra-
power in question are classes in the sense of (Ul . We have pro-
ved that even AST with the axiom of reflection is consistent
(relatively to ZF).

Let us note that according to § 7 there is no interpre-

tation of AST with the axiom of reflection in AST,

§ 10, Remarks and problems. In this section we are going
to mention some open problems concerning metamathematics of

the alternative set theory,
The following question was motivated in § 6:

Open problem. Is there an interpretation of TC + A 51 +
+A 61 in TC + A 51 7

Let us remind that ZF + "there is an infinite set without
countable subset”" has an interpretation in ZF and hence the
axiom A 61 is not provable in TC + A 51.

In the last section we dealt with models of AST in 2ZF.
Some other results and problems concerning this topic can be

found in [P-S], let us mention the following question only:

Open problem, What are necessary and sufficient conditi-
ons for e model Wl = ZFpy, %o be expa.ndabie to & model of AST?

Let us note that for every model = AST, the model %),
is recursively saturated and that 1f 9 = ZFF;Ln is resplend-
ent then there is a model O = AST with %), = 771 but the
expandability of a model of ZFFin to a model of AST is eqi-

valent neither to recursive saturation nor to resplendency.
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Let us deal with different forms of the axiom of choice.
In § 6 che I [V] the axiom of choice was proved ir AST__6 "sing
the axiom of extensional coding. In this proof the axiom =¥

cardinalities was essentially used.

Open problem, Is A 6 provable in TC + A 4 + A 5 + the a-
xiom of extensional coding?

It is naturel to investigate even the following forms of
the axiom of choice which correspond to forms of AC used in
classical set theories and arithmetic

A 63 (Strong schema of choice), For every formula & (z,2)
we accept the axiom ( Yx)(3IX) & (x,X) — (IYN(V x)P(x,¥"{x}).

A 64 (Scheme of dependent choices). For every formula

@(zl,zz) we accept the axiom ( ¥X)(3Y) & (X,Y) —
—> (¥X)(32Z)(dom(Z) = FN&( VnePFN) & (Z"{n}, 2"{n+1}) &
g.z"{0} = X).

Both axiome A 63, A 64 are consequences of the axiom of
reflection. Evidently in AST it is provable:

(a) A 64—> A 62 (consider the formula Y(X,Y) =
= (YnePFN)(dom(X) = n—> (dom(Y) = n+l & & (n,¥"{n3))); sup-
posing (¥neFN)(3IX) ® (n,X) we have (VX)(3IY) ¥(X,Y), if
Z"{0% = 0 and (¥neFN) ¥ (z2"{n}, Z"{n+1%) then (Y ne FN)P(n ,
(Z"{n+13)"{n})).

(b) A 63— 462

(¢) A 62—> A 61 (suppose dom(X) = FN and consider the
formula ¢ (n,f) = (dom(f) = n&£SX); if (VneFN) & (n,ZIn})
then put F(n) = 2"{n+1li(n)).

None of the implication A 64 —> A 6, A 62—> A 6 and
A 61—> A 6 is provable in AST_G. To prove this, considering
the Vencovskd s interpretation * (cf. LVe 3]) it is sufficient
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to show that 1f §X ; ne FN3 is a collection of % -classes then
ever the nlase X = U{ er{nz,;ne]?‘]ﬂ is & X -class. Let X be
o v

e figure in the equivalence {tnl and let Ln = ngﬁv(Ln). Then
there is 4 so that (VY neFN) L, < ¥ and we put T =

= U‘{Ex
~

LS A,

¥
F'L = L the equality F"X = X holds. Since F(n) = n for every

~ s, o
> 7 (Ln)x{nhnaFN% end L = Exp (L). Lvidently

, we have to show that for every automorphism F with

neFN, this is the same as F"xn = Xn and for the proof of this
it is sufficient to show that F"Ln = I‘n' but this is trivial
" = yn = Tn = 77y)=
because L"in} = Ex . (L)"{n} = Ex, (L"{n}) = Ex,a.(Exocn?T(Ln))_
= Exd’m,(Ln) = Ln'
0f course, there are several open problems concerning con-

nections among these axioms in particular the following:
Open problem. Is the axiom A 61 provable in AST_G?

Open problem, Are the axioms A 62, A 63 and A 64 provab-
le in AST?
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