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A CHARACTERIZATION OF REALCOMPACTNESS IN TERMS
OF THE TOPOLOGY OF POINTWISE CONVERGENCE ON THE
FUNCTION SPACE
V. V. USPENSKII

Abstract:s We prove a theorem of which the following two
statements ere immediate corollaries: (1) if cp(X) and Cp(Y)

are homeomorphic and X is realcompact, then Y iﬁ realcompact;
(2) 1let k be a non-measurable cardinal and f£:R —> R be such
a function that its restriction to every countable subset of

RE 1s continuous, then £ is continuous,
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When cp(x) - the space of all realvalued continuous func-
tions defined on X, with the topology of pointwise convergence
~ is realoompact? A sufficient condition was found by A.V. Ar-
hangelskii [1]: X is normal, and every s -continuous func-
tion £:X—> R is continuous. A function £:X—> Y is called k-
continuous if its restriction to every subset Ac X of power
< k is continuous. Chigogidze proved later that for a normal
space X the above condition is also necessary for cp(x) to be
realcompact. Finally, using a slight modification of the con-
cept of k-continuity, Arhangelskii gave a compleée answer to
the posed question [2], Call a function f£:X—> R strictly k-
continuous if for every Ac X with |Al <k there exists a conti-
nuous function g:X—> R such that L), = G’A' Now for a Tycho=-
noff space X the !t;llowing two conditions are equivalent:
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(1) Cp(x) is realcompact; (2) every stirictly 4 -continuous
function f£:X—>R is continuous (for a normal X "strictly"
can be omitted), [2). In order to state this theorem more ge-
nerally, consider the cardinal functions gq, to’ tm ("the Hewitt
number”, "the functional tightness™ and "the modified functio=-
nel tighiness", respectively) defined as follows,[2] (all spa-
ces are Tychonoff):

a(X) = min {k: for every x € SX\X there exists a family
7 of open subsets of 3X such that x € NycBINX and Iyl
£kt;

to(x) = min {k: every k-continuous function f:X— R is
contimious};

t_(X) = min {k: every atrictly k-continuous function
23X —>R 1is continuous?.

Then q(X) = o iff X is realcompact. The theorem of Ar-
hangelskii asserts that the equality %, (X) = q(Cp(I)) holds.,
The aim of the present paper is to prove the "dual" equality
tm(cp(x)) = q(X). The inequality " " is due to A.V, Arhan-
gelskii [ 2, Corollary 6], but the opposite inequality
tm(cp(x))é.q(x) is new,

Theorem 1. For every Tychonoff X,

tm(cp(l)) = to(cp(x)) = q(X) = q(cp(cp(x))).

Proof: X can be embedded as a closed subspace in
cp(cp(X)), so q(X)« q(cp(cp(x))). Applying the equality % (X) =
= q(cp(x)) to cp(x) instead of X, we see that q(cp(co(xn) =
= 1,(Co(X)). Let k = q(X). As $,(C (X)) ££,(C (X)), it is
enough to prove that to(cp(X))ﬁg.

Lemma, Let ¢ :Y—> Z be a continuous surjection. If

t,(Y) £k, B 1s a base of oven sets in Y and for every GeB
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there exists an open subset Hc Z such that @(G)cHC U{IZ:AC
c @(G) and 1Al €k} (x), then t (Z)<k,

Proof: Let f£:Z2—> R be k-continuous. The mapping £ o @
:Y—> R is continuous, for it is k-continuous and to(Y)_é kKo Let
Z,€ 2 and €> 0, Choose Y,€ Y, and GE€B so that g(yo) = 2,9
Ve Gand £ oqg(G)clf(z) - , £(3)) + €]. It HCZ satis-
fiee the condition (%), then 3 ¢ ¢ (G)cH, and k-continuity
of £ implies f(H)c £(U{A:Ac @(G) and |Al&k})c ULE(A):A €
c ¢(G) and lAlex¥c(£(z)) - e , £(2,) + €1, which means that
£ is continuous.

Instead of CP(X) we shall consider its subspace Z = {f €
3 cp(x)zf(x)c (0,1)¢, which is homeomorphic to CP(X). Por fe2
denote by T the extension of f to BX, and put ¥ = {?’:IGZE -

- {8€C(pX):04g <1 and 10U (1) c XN X3 C (B X). The
tightness of cp((:sx) is countable, so to(Y)é t(Y)< t(cp((gx)) -
= R4k Let g :Y—> Z be the restriction, ¢ (g) = g)x for ge¥Y.
By the lemma, the proof will be complete when we check the con-
dition (k). Let B be the standerd base in ¥, i.e. elements of B
are the sets G = n{ucx,ox) :xc E}, where E is a finite subset of
}X, {Oxzxe E% ie a family of nonempty open subsets of the clo-
sed interval [0,1] and M(x,0,) = {ge Y:g(x)e 0 . We claim that
if Ge B is as above, then for H = {f¢€ 2:£(x)¢c O; for every x €
€ ENX}y= ¢ (N{M(x,0,):xe ENX}) the condition (%) 1s satis-
fied, The inclusion @ (G)c H is obvious. It remains %o show that
for every fe H there exists a set Ac G such that |1Al£€k and f €
€ g(A). To this end, put E; = ENX, E, = EN(BX\X), and choo-
se a family ¢ of open subsets of 3 X such that B,c Nyc BX\X
and |4 | £ k. This is possible by the definition of q(X). We may

suppose that y is closed under finite intersections end
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C UT’”‘H = §, Por each Ue 7 let gy:3X—>[0,1] be a func-
tion such that 3u(pX\U)c{o§ and gU(Ez)c{H. Choose a func~
tion te G which does not assume values O and 1, and define hy =
« To(1-g;) + t-gy& C(RX). Clearly bye Y, Moreover, hye G: sin-
ce hUlEl = I]EI and h‘Ulﬂa = tlkz’ we have hy;(x)e 0, for each
X€BUE, = E. Let A m{hy:U e 3¢, Then AcG and |Al = Iyl < k,
Por every finite subset Fc X there exists a set Ue 9~ which
has an empty intersection with F. The corresponding function hy
coincides with f on the set F. Consequently, f &€ @ (A). The the-

orem is proved.

Corollery 1. X is realcompact iff cpcp(x) is realcompact.

Corollary 2. Suppose cp(x) and cp(y) are homeomorphic. If

X is realcompact, then Y is realcompact,

The same conclusion was known to be true under the assump-
tion that cp(x) and cp(x) are isomorphic as topological vector
spaces,

Corollary 3. If a cardinael k is nonmeasurable, then to(Rk)-
= Ko in other words, every .yﬂ.o-continuoua function f:Rk—-> R

is continuous.

Proof: Let D(k) be a discrete space of power k. When k
is nonmeasurable, D(k) is realcompact. Apply the theorem to X =
= D(k) and note that R¥ = € (D(k)).

If k is a measurable cardinal, there exists a discontinu-
ous function I:Rk—p R which is n-continuous for every nommeasu-
rable cardinal n. To construct such a function, choose a non-
trivial two-valued measure m on D(k). Every ge C(D(k)) coinci-
des with a constant almost everywhere relative to m. Let £(g)
be this constant.
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Corollary 3 solves a problem posed in [1, ch. 4, § 21,

It can be generalized as follows:

Theorem 2. Let {X_ t < € A} be & family of first countab-
le spaces and X = TT{X _ :oce Af, If |A| is nonmeasureadle,

then every .s&o—continuous function £:X—> R is continuous,

Proof. Let D = < (2). Arguing as above and applying the
lemma to the natural continuous bijection Cp(ﬁﬂl k), )= k,
one shows that to(ébk) = &, for every nonmeasurable cardinal k.

Our theorem now follows by Theorems 1.l and 2.4 of [3].

Theorem 2 should be compared with the Noble s result [3,
Theorem 5,1]: it{X 1<« A% is a family of first countable
spaces, X = TT{X _ :o € A} and the cardinal |Al i5 not sequenti-
al, then every sequentially continuous function f£:X—> R is con-
tinuous., A cardinal k is sequential iff there exists a sequenti~
ally continuous function f£: & k_, R which is not continuous,
The first sequential cardinel is reguler limit [4] and does not
exceed the first real-valued measurable cardinal, Under the Mar-
tin’s Axiom MA a cardinal k is sequential iff it is real-valued
measurable iff it is Ulam measurable [5, 6]. So if MA is added
to the assumptions of Theorem 2, its conclusion can be refined
by writing "sequentiaelly continuous" instead of " £ ~continu-

ous,
The author wishes to thank Professor A.V, Arhangelskii for

helpful suggestions.
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