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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,1(1983)

A NOTE ON PARTIAL DERIVATIVES OF CONVEX FUNCTIONS
Ludsk ZAJICEK

Abstract: An elementary construction shows that for any
bounded continuous function on R there exists a convex func-

tion g on R? such that -%5(1,0) = £(x).
Key words: Convex function, partial derivative.

Clessification: Primary 26B25
Secondary 52A20

R.M, Dudley ([1l], p. 172) constructed a convex function
g on R? such that —g—g(x,o) is nowhere differentiable with res-
pect to x. His construction is simple but somewhat intricate.

In this note we present a quite elementary construction
which gives a sharper result. We show that for any bounded
continuous function £ on R there exists a convex function g
on R? such tnet $E(x,0) = £(x).

Note that the Dudley s construction has the advantage
that it gives a function g which is smooth on R2.

We present our construction in a more general setting,
Let H be a real Hilbert space, If £ is a function on H and
x,ve€H, then we put

8y2(x) = ltn, (£(xv) - £(x))n~t
and

D,£(x) = 1im, (£Cxitm) - ()"
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Thus O,f(x) is the usual directional derivative and D _f(x)
is the one-sided directional derivative, Clearly J,f(x) ex-
iste 172 D_ #(x) = = D_£(x).

Let XCH be a closed subspace of codimension 1 and let
ue x"‘ be a unit vector.

Proposition. Let f bde a bounded upper semicontinuous
function on X, Then there exists a contimmous convex function
g on H such that

(1) D, &(x) = £(x) for x¢X

and

(i11) If £ is contimuous on X, then aus(x) = f(x) for
x‘x‘

Proof. Let 1f(x)|<M for x€X, Por teX, x¢X and yeR
put

8, (xeyu) = 2(x,t) - M2 4y 2(8) = 1xP? = Dx-th? 4 y £2(t).
The functions a, are affine on H, a(t) = ItI% am
By84(t) = £(t). Put g(s) = gy(s) = 2 ay(s).
Since a (x#yu) < i1 + 1yl N,
€ is a locally upper bounded convex function and consequently
1t 1s contimuous. Obvicusly g(x) = Ix#% for x<X and there-
fore Dug(x)znutx(x) = £(x) for xeX, Let x¢X and & > O be
fixed, Then there exists a d'> O such that f(t)<f(x) + ¢
for t€X, fit-x A< . Since tor Ht-x 8 2J , y>0, we have
ayx + yu) & 1xl2 - 52 + yx, we conclude that for all suffi-
ciently small y>O and all t€X

ay(xayu) < Uxl2 + y(2(x)+ € ).

Consequently Dug( x) & £(x).

Eow suppose that £ is contimuous and x€X is fixed. We have

o”-



Dugf(x) = f(x) and since clearly g.(x+yu) = g_e(x-yu), we
obtain D_ g.(x) = D.g o(x) = -£(x).

Corollary. Let PcR be a closed set. Then there exists
a convex function h on R® such that -g-;(z.o) exists iff x & P,

Proof. Put H = B%, X = {(x,0); xR} and £(x,0) =
= Cp(x). Lot g, be the function from Proposition. Now it is
clearly sufficient to put h(x,y) = max (g,(x,3), x°).
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