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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,1 (1983) 

A NOTE ON PARTIAL DERIVATIVES OF CONVEX FUNCTIONS 
Ludek ZAJlCEK 

Abstract: An elementary construction shows that for any 
bounded continuous function on R there exists a convex func­
tion g on R2 such that -|g(xfO) - f(x). 

Key words i Convex function, partial derivative. 

Classification: Primary 26B25 
Secondary 52A20 

RJSI. Dudley (Cl]f p. 172) constructed a convex function 

g on R such that -w.^(xfO) is nowhere differentiable with res­

pect to x. His construction is simple but somewhat intricate. 

In this note we present a quite elementary construction 

which gives a sharper result. We show that for any bounded 

continuous function f on R there exists a convex function g 

on R2 such that -^f(XfO) - f(x). 

Note that the Dudley's construction has the advantage 
2 that it gives a function g which is smooth on R . 

We present our construction in a more general setting* 

Let H be a real Hilbert space. If f is a function on H and 

x,vcH, then we put 

av*(x) -.11-* UU+hv) - f(x))h
-1 

and 

D f(x) « 11* (f(x+hv) - f(x))h-1. 
v M*-+Q+ 
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thus O ^ x ) i s the uaual diractional derivative and D ^ x ) 

la the ona-sidad directional derivative. Clearly dvf(%) ex­

i s t s i f f B^f(x) • - DTf(x). 

Let I c H be a oloaed subs pace of codimension 1 and la t 

u c l ba a*unit vector. 

Proposition. Lat f ba a bounded upper semioontinuous 

function on I . Then there exists a continuous convex function 

g on H such that 

( i ) Du g(x) • f(x) for x c Z 

and 

(11) If f la continuous on Z9 than d|1g(x) « f(x) for 

x c Z . 

Proof. Lat |f(x)l<M for x c l , for t c Z 9 x c Z and ycR 

I«t 

at(x45yu) - 2(x9t) - | t l 2 • y f ( t ) « | x l 2 - | x - t l 2 • y f ( t ) . 

The functiona a t are afflna on H9 a t ( t ) • | t | 2 and 

S t t a t ( t ) • f ( t ) . Put g(s) • g ^ s ) • ^ann a t(»>. 

Since at(x4gru) * | x | 2 • | y l M9 

g Is a locally upper bounded convex functien and oonaequently 

I t la continuous. Obviously g(x) • | x8 2 for x c Z and there­

fore Dug(x)£Duax(x) m f(x) for x c l . Lat x e l and e > 0 ba 

fixed. Than there exists a cfV 0 such that f ( t ) < f ( x ) • e 

for t c l , flt-x I -< cf . Since for I t-x I Ztf 9 y > 0 9 we have 

a t (x • yu) a* I x l 2 - <5*2 • yX9 wa conclude that for a l l suffi­

ciently snail y > 0 and a l l t c Z 

at(x4ya) * | x l 2 • y(f(x)* fc ) . 

Coneequently QQg(x)«af(x). 

Sow suppose that f i s continuoua and x c l la fixed. We have 
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Bug f(z) • f (z) sad sinos claarly gf(x+yu) - g_ f(x-yu) t ws 

obtmia D ^ U ) • l^aLf*** • - * ( z ) . 

Corollary. Lot Fc H ha a closad sot . Than thara axists 

a conTax funotion h on R2 suoh that *&i§(-*tO) axists i f f x £ *• 

2sfiof. Pat H m R2, X - { ( z 9 0 ) | zaR? sad f(z90) • 

• C-p(x). Lot gf ha tha funotion fro* Proposition. How i t i s 

claarly saffioisat to pat h(x ty) • aaz (g f(x„y) f x 2 ) # 

R a f a r a n o a 
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