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COMMENTATiONES MATHEMATICAL UNIVEHSITATIS CAROUNAE 

24.1 (1983) 

A NOTE ON NORMABILITY OF LOCALLY CONVEX SPACES 
J. VUKMAN 

Ahatracti Let X he a real or complex bornological and 
barrelled Hausdorff locally convex vector space and L(X) the 
algebra of all continuous linear operators of X into itself* 
It is proved that under certain purely algebraic conditions 
on L(X; there exists an inner product on X9 such that X equip­
ped with this inner product is a Hilbert space, and the topolo­
gy induced by this inner product coincides with the given topo­
logy on X. 

Key words and phrases; Boraological and barrelled looa 
ly convex space, involution, inner product, Hilbert space* 

Classifications 46.405, 46A07, 46.409 

Throughout this paper we denote by L(X) the algebra of 

all continuous linear operators of a locally convex space X 

into itself, by P(X) the algebra of all continuous linear ope­

rators with finite dimensional range, and by X* the space of 

all continuous linear functionals acting on X* We shall write 

x<8> f for a continuous linear operator defined by the relation 

(x<3> f)y - f(y)x where fc X* is a fixed functional and xeX 

a fixed vector* By involution we mean a linear and in the com­

plex oajie a conjugate-linear mapping A t—* A4" defined on L(X) 

cr 9(X) 0uoh that (AB)* - B*A* and A** - A ia fulfilled* The 

Thiø work wttø øupportød Ъy the Boriø KidriЗ Fund, LjuЫjana
t 

Tugoølavia* 
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pnrpose of this paper is to prove the following result. 

theorem 1* Let X bo a real or complex bornological and 

barrelled Hausdorff locally c OUT ex spaoe. Suppose that there 

•xi»t» an involution Ah->A* on f (X) auoh that on some mini­

mal loft ideal Ao f(X) the implication A*A » 0 =--> A « 0 is 

fulfilled. In this oase there exists an inner product (.,.) 

on X suoh that X equipped with the inner product is a Hilbert 

•pace, and the topology induoed by the inner product coinci­

des with the giTen topology on X. for eaeh A a F(X) the relati­

on (Axfy) m (x,A*y) is fulfilled for all pairs x#y€l. 

Remarks* In oase X is a Banaoh space, the result aboTe 

reduoes to a theorem proTed in our earlier paper 113. The re­

sult aboTe can be considered as an improvement of a well known 

result due to S. Kakutani and G.W. Maokey (see [3JfE4J,riJ and 

[6]) whioh characterises Banaoh spaces isomorphic to Hilbert 

spaces among all Banaoh spaces. Some results in the sense of 

Kakutani-Mackey theorem can be found in ill and f8]. It should 

be mentioned that some results concerning the nonliability of 

the locally convex space X in terms of L(X) hare been proved by 

J.H. Williamson [9J« for the proof of Theorem 1 we need the 

following lemma. We shall omit the proof of this lemma, since 

it is possible to use the unohanged proof of Lemma (4*10.1) 

in C53# 

Lemma 1. Let A be an arbitrary *-algebra and & c. Jh 

a minimal left ideal. If for eaeh a e & t a*a * o implies 

a • 0t then X is of the form £ • -&p9 where p is a unique 

Ltian idempotent. 
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Proof of Theorem !• According to Lemma 1 there exists a 

unique hermitian idempotent P such that the minimal left ideal 

X can he expressed in the form ££« 7(X)P« Using the faet that 

the left Ideal # is minimal, it is easy to proTe that the ran­

ge of the idempotent P is one-dimensional9 which allows us to 

introduce an inner product into X as follows t 

(1) (A9B)P « S*A9 A9B e X . 

ObTiously, (.„•) is linear in the first variable for the fixed 

second. Using the faet that P* « P9 we obtain (A9B) « (B,A). 

Since (A9A)P « A* A the implication (A9A) « 0 «--> A « 0 is ful­

filled, whence it follows that (.,•) is positiTe or negative 

definite. But (P9P) * 1, which Implies that (•»•) is positiTe 

definite* Therefore (•#•) is indeed an inner product on £6 • 

The idempotent P can be expressed in the form 

(2) P « e<g> f 

where e is a fixed nonzero vector, and feX* a fixed continu­

ous linear functional such that f(e) * 1. Obviously, the mini­

mal left ideal £& contains exactly those operators which oan 

be written in the form x €> f 9 where f is the functional from 

(2), and xcX an arbitrary vector* The isomorphism x*~* xg> f 

allows us to introduce an inner product into X as follows s 

(3) (xfy) « (x® f9y€> * ) , xfye X • 

Let us proTe that 

(4) (Ax9y) • (xfA*y) 

holds for each A* P(X) and all pairs xtyaX# Using the relation 

(Ax) ® f « A(x ® f), we obtain (Axty)P - ((Ax) <g> f 9y <g> f )P « 

» (A(x<g> f)9y « f)P - (y 0 f)* 4(x® *>• °* «-* °*n«* ^ d » 
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(xfA*yOF - (x® f f(A*y)® f)P . (x€> f,A*(y Q f ) ) f • 

- (A*(y<8> f ) )* (x<8 f) - (y<g> f)* A(x<g> f ) . 

low we intend to proTe that to eaoh yc X there corresponds a 

continuous saminorm p( •) such that 

(5) l(xfy)l * p(x) 

holds for all xeX. Let AfBeF(X) be arbitrary* Then for each 

oontinuous seminorm p(.) there exists some continuous B amino no 

t(.) 0uch that 

(6) p(ABx)-*-q(Bx) 

is fulfilled for all xeX. Let P, e and f be from (2). There 

exists a continuous seminorm p(.) such that p(e)4-0 (recall that 

X is by aseumption Hausdorff). Using (3) and (6) we obtain 

l(xfy)lp(e) - p((xfy)Pe) - p((y<g) f)* (x<g> f)e)-Sq((x<S> f)e) -

• q(x)# Hence l(xfy)l -6 p(e) q(x) whioh proTes the relation (5). 

fhe relation (5) means that for eaoh y€X the linear functional 

f f defined by f (x) - (x,y)t is continuous. Let us prove the 
w y 

•OUTerse. lore precisely, we intend to show that each continu­

ous linear functional g€ X* oan be written in the form g(x) » 

» (x,y) for some fixed ye X. Let therefore g e l * be gtrenf and 

l e t ue choose a fixed TOO tor ueX suoh that (ufu) * 1 . Using 

tke relation (4) we obtain g(x) « ((u<g> g)xfu) • (xf(u€> g)* » ) • 

Let U0 now proTe that the set .Ate I i s bounded i f and only i f 

i t i s bounded with respect to the inner product. For this pur­

pose we shall f irst proTe that for eaoh bounded set Mo X the* 

rw eodjrts a oontinuouo seerinorn p(#) such that 

feel* fee? a l l xcX mU a l l f % JUL . -Ut therefore a bounded 



set «Mc X fee glvta, and l e t its consider the family of eomtfc* 

nuome l iaear fanctionals it $ f (x) » (x fy) f y e Ji I • % 

the re la t ion (5) there corresponds for each X€X a continu­

ous seminorm Px(») such that If (x)I « l(x fy)I « I (y tx) | -s* 

£p x (y )* Using the inequality If (x)l £ px(y) and the fact that 

the se t J i i s bounded, we obtain sup If (x)I << cc # Hericef 
OL «&. \M* y 

simoe X 1© by assumption barrelled, there exists a continuous 

seminoxm p(») such that ! f_(x) \ --- p( x) holds for all y e Ji and 
y 

a l l xeX, whiah proves (?)«* From (?) i t follows that each boun­

ded se t i s bounded also with respect to the inner product* I t 

remains to prove the converse• I*et us therefore assume that 

the se t Ma X i s such that (xfx)~^C i s fulf i l led for a l l 

x fc J i and some constant C Let f € X* be an arbi trary conti­

nuous l inear functional* Using the fact that f can be expres­

sed in the form f(x) * (x fy) for some fixed ye Xf and the 

Schwartz inequality, we obtain U(x)t « l(x,y)l ^ (x f x) (y f y) f 

whence t f (x) | ^ C(yfy) for a l l x € Ji # Hencef for each f c X * 

we haTe sup.. If(x)I *-= oo f which implies that the set J i i s 

bounded (see L2, Theorem 3, p» 209])• 

Therefore there are two topologies on Xf the original one, 

and the topology induced by the inner product* Since we have 

just proved that the bounded sets in both topologies are the 

same, i t follows that the Identity mapping i s in both direc­

tions continuousf since both topologies are bornological 

(see [2, Proposition l f p , 220.1)* H«noef the topology induced 

by the inner product coincides with the given topology on X« 

I t remains to show that X equipped with the laser product Is 

not only a pre-Hilbert tat even a Hilbort *pt*e« fhls follows 

- П 



from the faet that a pre-Hilbert space, in which the Hi ass 

representation theorem holds, l a a Hilbert apaoa. The proof 

of the theorem la complete. 
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