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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,1(1983)

A NOTE ON NORMABILITY OF LOCALLY CONVEX SPACES
J. VUKMAN

Abstract: Let X be a real or complex bornological and
barrelled Hausdorff locally convex vector space and L(X) the
algebra of all continuous linear operators of X into itself.

It is proved that under certain purely algebraic conditions

on 1.(1? there exists an inner product on X, such that X eqaiz-
ped with this inner product is a Hilbert space, and the topo
f indnc;i by this inner product coincides with the given topo-
ogy on X,

Key words and %aaea: Bornological and barrelled loce’
ly convex space, involution, inner product, Hilbert space.

Classification: 46A05, 46A0T, 46A09

Throughout this paper we denote by L(X) the algebra of
all continuous linear operators of a locally convex space X
into itself, by F(X) the algebra of all contimuous linear ope-
rators with finite dimensional range, and by X* the space of
all eontinuous linear functionals acting on X, We shall write
X®@ £ for a continuous linear operator defined by the relation
(x® )y = £(y)x where fe X* is a fixed functional and xeX
& fixed veotor., By involution we mean a linear and in the com-
Plex case & conjugate-linear mapping A+—> A¥* defined on L(X)
or F(X) such that (AB)* = B*A* and A** = A is fulfilled. The
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purpose of this paper is to prove the following result.

Theorem 1, Let X be a real or complex bornological and
barrelled Hausdorff locally convex space. Suppose that there
exists an involution A —> A* on P(X) such that on some mini-
mal left ideal £ c P(X) the implication A¥A = O=> A = O is
fulfilled. In this case there exists en inner product (.,.)
on X such that X equipped with the inner product is a Hilbert
space, and the topology induced by the inner product eoinoci-
dos»with the given topology on X, Por each A6 F(X) the relati-
en (Ax,y) = (x,A¥*y) is fulfilled for all pairs x,y& X,

Remarks. In case X is a Banach space, the result above
reduces to a theorem proved in our earlier paper [ 7). The re~
sult above can be considered as an improvement of a well known
result due to S, Kekutani and G.W. Mackey (see [3],[4]),[1] and
[6]1) which characterizes Banach spaces isomorphic to Hilbert
spaces among all Banach spaces., Some results in the sense of
Kakutani-Mackey theorem can be found in [7] and [8]. I% should
be mentioned that some results ccncerning the normebility of
the locally convex space X in terms of L(X) hawe been proved by
J.H, Williamson [9]. For the proof of Theorem 1 we need the
following lemma, We shall omit the proef of this lemma, since
1% is possible to use the unchanged proof of Lemma (4,10,1)
in [51,

Lomma 1., Let A be an arbitrary x-algebra and £ ¢ A
a minimal left ideal. If for each a ¢ &£ , e¥a = O implies
a= 0, then &£ is of the form L= Ap, where p is a unique
hewnitian idempotent.
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Proof of Theorem 1, According to Lemma 1 there exists a
unique hermitian idempotent P such that the minimal left ideal
£ can be expressed in the form &£ = P(X)P, Using the fact that
the left ideal & 18 minimal, 4t is easy to prove that the ran-

ge o2 the idempotent P is ome-~-dimensional, which allows us to
introduce an inner product into £ as follows:

(1) (A,B)P = B¥A, A,Bc &£ .

Obviously, (ese) 18 linear in the first variable for the fixed
seeond. Using the fact that P* = P, we obtain (A,B) = (B,A).
Since (A,A)P = A* A the implication (A,A) = O => A = O is ful-
filled, whence it follows that (.,.) is positive or negative
definite. But (P,P) = 1, which implies that (.,.) is positive
definite. Therefore (.,.) is indeed en inner product om & .
The idempotent P can be expressed in the form

(2) Peext

where e is a fixed nonzero vector, and fe X* a fixed contimu-
ous linear functional such that f(e) = 1, Obviously, the mini-
mal left ideal £ contains exactly those operators which can
be written in the form x‘® 2, where £ is the fumctional from
(2), and xe X an arbitrary vector. The isomorphism xi—» x@ £
allows us to introduce an inner product into X as follows:

(3) (x,7) = (x® 2,y @ !).i,yex .

Let us prove that
(4) (Ax,y) = (x"‘,)

holds for each Ac F(X) and all pairs x,y € X. Using the relation
(Ax) @ £ = A(x® ), we obtain (Ax,y)P = ((AX)® 2,y ® £)P =
= (AMx® 2),y® 2)P = (y® 2)¥ A(x @ 2). Ou the other hand,
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(X,A*y)P = (x® £,(A*Y)® 2)P . (x® 2,A(y® £))P =
= (A (y® ))* (x® 1) = (YO £)* A(x® 2).

Now we intend to prove that to eesch ye X theres corresponds a

ocontinuous seminorm p(.) such that
(5) 1(x,3) = p(x)

holds for all xe X, Let A,Be P(X) be arbitrary. Then for each
eontinnous seminorm p(.) there exists some continuous seminorm
q(.) such that

(6) P(ABx) < q(Bx)

is fulfilled for all xeX, Let P, ¢ and £ be from (2). There
exists a continuous seminorm p(.) such that p(e)d 0 (recell that
X is by assumption Hausdorff), Using (3) and (6) we obtain
1(x,7)I p(e) = p((x,7)Pe) = P((y® 2)* (x® 1)e)£q((x® f)e) =
= q(x). Hence [(x,y)| <« p(e)'lq(x) which proves the relation (5).

The relation (5) means that for each ye€ X the linear funotional
t,, defined by fy(x) = (x,y), is continuous. Let us preve the
eonverse. More precisely, we iatend to show that eaech contimm-
ous linear functional g& X* ocan be written in the form g(x) =
= (x,y) for some fixed ye X. Let therefore gc X* bde given, and
let us choose a fixed vestor ue X such that (u,u) = 1, Uging

*he relation (4) we obtain g(x) = ((u ® g)x,u) = (x,(u® g)* w).

Let ws now prove that the set Mc X is bounded if and only if
1% 18 bounded with respect to the immer product. For this pur-
pose we shall first prove that for each bounded set Mc X the-
re emists s continmous seminorm p(.) such that

1¢4) 1(x,7)| & p(x)
hlds for all xcX and all y ¢ M . Lot therefore a bounded



set Mc X be given, and let us consider the family of comti~
mous linear functionals {ty; f’(x) =~ (x,5), ye M} . By
the relation (5) there corresponds for each xe X a contimee~
ous seminorm p_(.) such that Ify(x)l = [(x,3)]| = [(y,x)]| £

£ pg(y). Using the inequality lfy(x)l_(.px(y) and the fast thet
the set M 1is bounded, we obtain@slx&‘l f.y(x)l < © , Hence,
since X is by assumption barrelled, there exists a continvous
seminorm p(.) such that lfy(x)lé p(x) holds for all ye A and
11l x€ X, whiech proves (7). From (7) 1t follows that each boun-~
ded get is bounded also with respect to the inner product. I%
remains to prove the converse. Let us therefore assume that
the set Mc X is such that (x,x)4C is fulfilled for all

x e M and some constent C, Let £& X* be an arbitrary conti-
nuous linesr functional, Using the fact that f can be expres-
sed in the form f(x) = (x,y) for some fixed yec X, and the
Schwarts inequality, we obtain l£(x)| = |(x,y)| £ (x,x)(y,¥),
whence [£(x)|< C(y,y) for all x € M ., Hence, for cach fe X*
we have xmélef(x)l < 00 , which implies that the set M is
bounded (see [2, Theorem 3, p. 20%]).

Therefore there are two topologies on X, the original ome,
and the topology induced by the inner product. Since we have
Just proved that the bounded sets in both topologies are the
same, it follows that the identity mapping is in both direc-
tions continuous, since both topologies are bornological
(see [2, Proposition 1, p. 220]1). Hence, the topology induced
by the inner product coincides with the given topology on X.

It remains to show that X equipped with the immer product is
not only a pre~-Hilbert tut even & Hilders spase. This follows
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from the fact that a pre-Hilbert space, in which the Riessz

representation theorem holds, is a Hilbert space, The proof

of the theorem is complete.
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