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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROilNAE 
23.4 (1082) 

BIPARTITE INTERSECTION GRAPHS 
Frank HARARY, Jerald A. KABELL and F. R. McMORRIS 

ABSTRACT 

The well-known interval graphs are intersection graphs of a finite 

set of distinct intervals. A corresponding bi-interval graph G = (V,E) 

is formed by taking two families of intervals, R and S, and defining 

V = R U S and E = {xy: x €. R,y € S,x n y f 0}. The characterizations 

of interval graphs by Lekkerkerker and Boland are modified to obtain 

two criteria for bi-interval graphs. We observe that every bipartite 

graph can be represented as a bipartite intersection graph of some star. 

Key words: Interval graph, bipartite intersection graph, bi-interval 

graph, bi-subtree graph. 

AMS (MOS) subject classification: 05C75. 

1. INTRODUCTION. 

Our purpose is to introduce a bipartite version of the notion of 

intersection graphs. Some expected results are derived together with 

an unexpected one. All sets will be finite and the graph theoretic 

terminology of [4] is followed. 
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The idea of using the intersections of a family of sets to define 

the adjacencies of a graph is so natural that it arose independently in 

a number of areas in connection with both pure and applied problems 

(see Roberts [8]). Formally, if S is a set and f = {F.} is a 

family of distinct, nonempty subsets of S, the intersection graph ft(F) 

is the graph G = (V,E) with point set V = f and F.F. € E if and 

only if Fi O F. / 0 and i f j. If G is a graph such that G s fl(F), 

then f is called a representation of G. It is easy to show 

(Marczewski [6]) that every graph has such a representation. 

Since the class of intersection graphs is so broad, interest has 

focused on cases in which restrictions are placed on the nature of the 

set S or the family f. We now recall some of the basic definitions 

and results on two types of intersection graphs. If S is the real 

line and each F. € f is an interval, then ft(F) is called an interval 

graph. There are several characterizations of interval graphs. The one 

we will generalize is due to Lekkerkerker and Boland [5]. First we 

require some definitions. A chord of a cycle is a line joining two points 

which are not adjacent along the cycle. A graph in which every cycle of 

length greater than 3 has a chord is called ohordal. Three points u,v,w 

in a graph G form an aeteroidal triple if each pair of them is joined 

by a path which contains no neighbors of the third point. 

THEOREM A (Lekkerkerker and Boland). A graph G is an interval 

graph if and only if it is ohordal and contains no asteroidal triples. 

An interval graph may be alternatively defined as an intersection 

graph of a family of subgraphs of a path. Viewed in this way the 

natural generalization is to consider the intersection graph of a 

family of subtrees as a tree, called a subtree graph. They have been 

characterized independently by Buneman [1], Gavril [2], and Walter [9]. 
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THEOREM B (Buneman, Gavril, Walter). A graph is a subtree graph 

if and only if it is ohordal. 

We now introduce a bipartite analog to the above. Given e set S 

and a family F of distinct subsets of S, partition f into two 

subfamilies F-, and Fp. The bipartite intersection graph of F with 

respect to the given partition, written fi(F,,F2), is the graph 

G = (V,E) with V = F and F^. € E if F̂^ € ? v F. € F2 and 

Fi A F. f 0. That is, «(r"-, 2̂) is that graph obtained from fi(F) by 

removing those edges between points in F, and between points in F~. 

Since every graph is an intersection graph, it is obvious that every 

bipartite graph is a bipartite intersection graph. 

As a natural example of a bipaitite intersection graph, consider 

the subdivision graph SG of a graph G. It is readily apparent that 

SG s n(V,E). For another example, let f and Fp be two partitions 

of a set into distinct parts. Clearly fi(F, U F j is a bipartite 

intersection graph and one might ask if all bipartite graphs arise this 

way. It is easy to see that a bipartite graph G is the intersection 

graph of the parts of two partitions of some set if and only if G has 

no isolated points. 

2. BI-INTERVAL GRAPHS. 

Since the most intensively studied intersection graphs are the 

interval graphs, it is natural to investigate the bipartite version. 

If F is a family of intervals, partitioned into subfamilies F, and 

f2t then Q(F,,Fp) will be called a bi-interval graph. These will be 

characterized by a result analogous to Theorem A, but to do so we must 

define modifications of the notions of chordal graph, asteroidal triple, 

and simplicial point. 
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A bipartite graph will be called bi-ohordal if it has no induced 

cycle of length greater than or equal to six. A bi-asteroidal triple 

is a set of points {u,v,w} of a bipartite graph such that between any 

pair of them, there exists a path which is not adjacent to any point in 

the neighborhood of the third point. A somewhat unconventional notion 

of deleting an edge is the following: if e = {u,v}, then consider 

G - {u,v}. Thus when an edge is deleted, all edges adjacent to it are 

deleted as well. By l i n k ( e ) , we shall mean the subgraph induced by 

N(u) U N(v) - {u,v}. An edge for which l i n k ( e ) is complete bipartite 

is now called a simplicial edge. We will need to distinguish two types 

of simplicial edges, which are analogous to the strongly and weakly 

simplicial points of Lekkerkerker and Boland [5]. A strongly simplicial 

edge e has G - l i n k ( e ) connected. The remaining simplicial edges are 

weakly simplicial. Two edges are apart if the subgraph induced by their 

points is 2K2. 

We can now state the characterization theorem. 

THEOREM 1̂. A bipartite graph is a bi-interval graph if and only if 

it is bi-ohordal and contains no bi-asteroidal triples. 

Proof: It is convenient to consider the partition of the family 

of intervals to be defined by coloring each interval black or blue. 

< The necessity of both conditions is readily established. Suppose 

G contains a cycle of length 6 or more, U I W I U D W 2 * *,ukwkul* **e* ^i 

and W. be the intervals corresponding to u. and w^ respectively. 

Then the black interval U1 and the blue interval Wp must be disjoint, 

and likewise W- and Up. But U~ is joined to U, by the pairwlse 

overlapping chain of intervals W~...U.W , so it must be the case that 

in this chain, either a black interval overlaps Wp, or a blue interval 

overlaps U2, in either case giving a chord in the cycle. A similar 
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argument suffices for the other condition. 

For the converse, we firs^ need to make some observations. Clearly, 

under the hypotheses, G cannot contain three mutually apart strongly 

simplicial edges, since they would necessarily give rise to a bi-asteroidal 

triple. A result of Golumbic and Goss [3], however, guarantees the 

existence of some simplicial edges. Specifically they prove: 

( 1 ) In a connected, bi-chordal graph with no two apart edges, every 

point is incident with a simplicial edge; (2) If G is a connected, 

bi-chordal graph containing two apart edges and if S is a minimal 

separating set of points for which at least two components of G - S are 

nontrivial, then each nontrivial component of G - S contains a 

simplicial edge. 

The demonstration of the sufficiency can now be accomplished by 

modifying the proof of Theorem A as in [5], replacing simplicial point 

by simplicial edge throughout, and similarly for the other corresponding 

concepts, remembering that an edge is represented by a pair of intervals, 

one black and one blue. • 

The determination of forbidden subgraphs for bi-interval graphs 

is again exactly parallel to the corresponding derivation of Lekkerkerker 

and Boland for interval graphs. It differs only in that now only one 

infinite family is needed. 

COROLLARY 1. A bipartite graph G is a bi-interval graph if 

and only if it does not contain as an induced subgraph any of the 

four graphs ofk Figure 1 or any cycle C , n >_ 6. 
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Figuгe 1 . Four FoгЪidden Sübgrapћs for Bi-interval Graphs . 

3. BI-SUBTREE GRAPHS. 

A bi-aubtree graph is the bipartite intersection graph of subtrees 

of some tree. Looking at Theorem B, and keeping in mind the ease in 

which the bipartite version of Theorem A was proved, one might well 

conjecture that bi-chordal graphs are precisely the bi-subtree graphs. 

Surprisingly this is not even close to being true. 

EXAMPLE. Let G = K and with the endpoints labeled 1,2,3. 

Let T
1
 = V(G) - {i} for i = 1,2,3 and let %1 = {{1},{2},{3}}, 

C
?
 = {T-.jTpjT.,}. So C

1
 and C

?
 are sets of subtrees of G, but 

clearly n(f
1
,C

2
) is not bi-ohordal.* 

THEOREM 2. Every bipartite- graph is a bi-subtree graph of some 

stár K. l,n 
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Proof; Let G be a bipartite graph with bipartition X,Y. Form 

the graph H by adding to G an edge between every pair of points in 

Y. McMorris and Shier [7] showed that such graphs, called split graphs, 

are characterized by having representations as intersection graphs of 

subtrees of some star K_ . Let C-, be the set of subtrees 
l,n 1 

corresponding to points in X and %2 the set of subtrees corresponding 

to points in Y. Clearly G s nfC,,*-)* " 

Obviously the converse of Theorem £ holds as every bipartite 

intersection graph is bipartite. 
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