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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

ON EQUILIBRIUM POINT IN TOPOLOGICAL VECTOR SPACES
Olga HADZIC

Lﬁtrsot: In [7] S. Hahn introduced the notion of 6=
admissible subset of a topolof,c.l vector space and proved,
using this notion and Kakutani s fixed point theorem, an in-
teresting and general fixed point theorem for quasicompact
multivalued nppin? in topelogical vector spaces, whish is
a generaliszation of many fixed point theorems for multivalued
mappin?. We shall prove in this paper, using Hahn s fixed
point theorem, a generalisation of Browder g ¢quilibrium point
theorem from [1) and of Theorem 1 from Tallos s paper [17].

Key words: Quasicompast multivalued mappin € -admis-
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Classification: 47H10

1, Preliminaries. PFirst, we shall give some notations
and definitions from [7) end Hahn’s fixed point theorem,

Definition 1. Let E be a topological vector space, Z be
a closed subset of E and 6(2) a non-empty system of subsets
of Z. The set 2 is said to be ¢ -admissible if for each compact
mapping P:A —> 6 (Z), where A is a topological space, and for
sach neighborhood V of zero in E there exisis a finite dimensio-
nal vector subspace By of F and & compact mapping Fy:dA —> 6(2)
such that we have:

(1) RM)s By

(11) Xor every xcA, Pv(x)é (x) + V.
If£ 72 = B then E is called 6 -admissible topological vector space.
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It 6(2) 'stJZ{xg then 6 -admissible subset is admissible

in the Sense of V. Klee.

The admissibility of many nonlocally convex topological
vector space is proved in [14] (for LP, 0<p<1), in [15] (for
the space of measurable functions S(0,1)) and for other classes
of spaces in [10],[12]) and [13], It irs xnown that every closed
and convex subset of a locally convex topological vector space
is admissidble but for an arbitrary topological vector space this
is an open question, There is no example of convex and closed
non admissible subset of a topological vector space. If E is a
locally convex space, Z is a closed and convex subset of E and
R(Z) = 4{MIMcZ, M is closed and convexf then the get Z is R -
admissible. In this paper we shall give some examples of f ~-aa-
missible subsets in non-looally convex topological vector spaces.

In[7) S. Hahn introduced the notion of quasicompact mapping
and for such class of mappings proved a very general fixed point

theorem,

Definition 2, Let E be a topological vector space, K be a
closed, convex and M a closed subset of E with Mc K. Let &'(K)

be & system of non-empty subsets of K. An upper semicontinuous
mapping Fi:M —> & (2) is called quasicompact, if for each beM

there exists a closed, convex subset ‘!OQE such that we have

be ‘ro, F(MNn TO)E ToN K and_the set F(MA~ To) is compact and Kn !o
1s & -admissible.

Prom Definition 2 it 1s easy to see that every compact map-
ping P1M —> & (K), where K is a closed, convex, & -admissible
subset of a topological vector space E, is quasicompact mapping
since in this case we can take that T = K. In[7] is proved
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that every Y densifying mapping F:M —> R (K) in locally con-
vex space is a quasicompact mapping. In [8] S. Hahn gave some
exsmples of quasicompact mappings. So the following fixed point
theorem generalizes many fixed point theorems for muliivalued.
mappings in localy convex spaces.

Theorem. Let E be a topological vector space which is
Hausdorff, W a olosed neighborhood of a point b€E, K a closed,
convex subset of E suoh that beK. Let P:WNNnK —> 3R (K) be a
quasieompact mapping where X (K) is R(K) or Y ix3e. If tx +

+ (1-t)b§ Px for every x € @WnK then there exists a point
x € WnK with

Xoﬁ P( xo) .
Prom the Theorem we obtain the following Corollary.

Corollary. Let E be a Hausdorff topological vector space,

K be a closed, convex and § -admissible subset of E and FiK —>

—> R (K) be a compact mapping (i.e. upper semicontinuous and
F(K) is compact). Then there exists xoeK 8o _that x, € P(xo).

2. Two theorems on equilibrium point. First we shall pro-
ve two lLemmas, Lemma 1 is a generalization of a result from [13]

and Lemma 2 is a generalization of a Browder’s result from [11.

Lemma 1, Let Ei (1€1I) be a Hausdorff topological vector
space, K4 & E, (46 1), 6’1(!(1) a nonempty family of subsets of
Ky, 1agt 18 4n 6,(K,) and K, be &, admissible, for every ie¢1I.

pe 4 6‘(!51 Ki) is a non-empty family of subsets of &LTIKI such
that:

A eg( {,TJI K1)4==> Py A€ di(Ki)
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then .TT K; is o _-admissible.
— 4l —_—

Proof: Let M be an arbitrary topological space and F:
M —> G(J;TI K,) be a compact mapping. We shall denote by 7y
the fundamental system of neighborhoods of gero in B, and by
V' the fundamental system of neighborhoods of zero in Iy By
(in the product topology). Let Ve 7 . We shall show that
there exists a compact finite dimensional mapping F:M —>

“’6(£TJI K,) so that for every xeM:

(1) F(x)s F(x) + V.

Since V is a neighborhood of zero in LTI Bi it follows that

<

there exists a finite set {11.12,...,111}551 and V, € ‘U’1 80
that:

Vy defi,io,.eeipd

V - .

Ei 1e IN {11,12g0nagini
Let 1‘1(1) = prxi!(x), for every i€ I and every xc M. Since
x)e 6'(‘.‘121 K;) and for every As ;71 Ky “‘:g(ﬂ;r], K;) im-
plies prxiA € 61(x1) it follows that for every x€M and every
iel Pi(x) € 6'1(K1) and so P, :N —> 6‘1(K1) is a compact map-
ping for every i €I, Purther for every ic I the set Ki is 6’1
admissible. Let 1e-i11.12.....1n}. Since P, is a compact map-
ping there exists a finite dimensional subspace Bvig Ej and a

finite dimensional compact mapping iia — &,(K;) so that for
every xeM:

’1(')5 Evi, fi(x)sri(x) + Vi.
Let F,(x) = a,, for every xcM and every 1€ INt1y,15,.00,1 3
and for every x<M we shall define the mapping ¥ by F(x) =
-0 'i"i(x). Por every i €I we have that ¥, (x) ¢ 64(Ky).
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Purther, it is obvious that ¥ is an upPer Semicontinuous mape
ping which is finite dimensional. Since m-) is compact for
every 1e I it follows that F:M ~—>6‘(J;r1 K;) is a compact fi-
nite dimensional mapping such that (1) 18 satisfied.

The above Lemma generalizes Satz 1.1l from [13)], where
K; = By, for every ic I and &,(E,) -x:JEf:xS and 6(4-,27131) =
= U _&x3.
X ETIC,
iel
Lemma 2, Let K; (1€I) be & non-empty, convex and com-
pact subset of Hausdorff topological vector space Ei (1e1),
K = . TI; K; and for every ic1, K{ -é'l;f{,xj. Further S, = ‘§i§_K,

for every 1 €I and for every 1€ I and every xcK the set Si(x)
is a nonempty and convex subset of Ki where:

Si(x) = iyl.yie Ky» [yiog’.]esi}
and for x -.(xi)e K, % = prxix, z = [yi,xiJeK means %y = ¥y
for j = 1, z;, = xd, for j=#i.
It for every 1c I, K, is R-admissible then
Lfe\l S5,+0.

Proof: As in (1] let us define the mapping T:K —> R (K)
in the following way:
T(x) = -Lgl Si(x), for every xcK.

Since Si(x) eR(Ki) it follows that T(x) is convex and from
Si(x) = :n'l(:n'zl(fi)r\ Si) (for every i< I and every xeK) it
follows that T(x) is compact, for every xecK, where vy Ky <
= x;——> K, and ,:K,= Ki'——-r K; are the projection operators.
As in [1] 1t follows that the mapping T is upper semicontinu-
ous and from Lemma 1 it follows that the set ;72'3 Ki is f-ad-

migsible compact subset of 1{‘;“1 Ei' Applying the Corollary from
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the Theorem we conclude that there exists u ‘1-731 Ki so that

u€T(u) and so us/MN\S,.
el 1

Now, we shall prove the first equilibrium theorem which

is a generalization of Browder's theorem from [11.

Theorem 1. Let K, (1€ I) be a non-empty, compact and con-

vex subset of Hausdorff topological vector space Ei (1),

K = .TT Ky £3K—> R (L1eI) be continuous real valued func-
tion and Ki IT KJ 80 _that each point xe€K can be written u-
niquely in the forg [xi,xij (xieKi, xie Ki). It for every i€ I
gnd t € R the set {yi,yie Kyg» ti(yi,fi)z t+3 is & convex subset

of Ky, for every X,& K, and for every i€ I the set K, is R~

admissible, there exists a point wu<K such that:
(2) i(u) -n;uaxK fi(yi,ui), for every 1 €1,

Proof: As in [1] let:
Sy =iuluek, f,(u)zmax fi(yi,ﬁi)}, for every icI.

Then all the conditions of Lemma 2 are satisfied and so there

exists ueK so that u €, QI Si which implies that u satisfies
(2).

Theorem 2, Let El'Ea""'En be metrizable topological

vector space and Ki" 4 & non-empty convex, compact and & -
admigsible subaet (1€1,2,...,n) where &(K;) = U ix}. More~

over let Ji' 'i'T,1 K —> R be a convex funetional so that for

every 1 ed1,2,,.,,n}:

(1) Ji(.,lx\i):Ki~——>R is_lower semicontinuous for eve-

Iy /iié Ki -é‘l;r_'.' xd
(ii) The fami;x {Ji(xino)zxiﬁ R ) xiéxj} Eﬂ!&:
continuous for every i eily2,...,n%,
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u:Is

Then there exists at least one element u € K1 so_that:

Ji(u)< Ji(xi,ﬁi). for every i€41,2,...,n3, x;€ K,
(8, = P"xi“)°
Proof: The proof is very similar to the procf of Theorem
1 from [17] and we shall give only a short proof since the rest

of the proof is as in [17], First, some notations which we need.

Por every %;& K; (1€ {1,2,...,n%) and t>0 let:
my(%,) -;(inéi%ji(xi.ii). %) = {xy€ Ky o3, (x5,%,) £ my () 4t5,
Let X, ¢ K and u(ii) be a neighborhood of %,& K; so that:
Xie UCRy), xg€Ky = 1T,(x0,%,) = J,0x0%)< f ,
If we suppose that U(Qi)cE is open, since Ki is ecompact from

the open covering {U(xi). 4 € Ki} we can select a tinite open
subcovering{u(xid), 3= 1,2,0.0,n4} of Ki' It x4€ d)i(xij)
(3551,2,....n1§) and h:,(xi) = X4 (x’e Ki) in [17] ie proved
that for every %, € U(fid). hJ(Qi)e @I(ii) which means:

/iie U(iij) = Ji(xid,ii)_/: mi(ﬁi) + %.
Further, let -ioij, jef, 2,....n1}} be a continuous pe.rtition

of unity subordinated to {U(xid), Jedl, 2....,n1}§ and gi -
-22‘ O;4hy. Then gi:Ki - E; 1s continuous, maps Ki into K, and:

gi(xi)e @1(xi), for every xie: Ki (1€ {1,2,00e9n%)
As in [17])it is enough to prove that the mapping ft:i/];rl Ki-—>
v
——)mTj 4 K4 has a fixed point where:
v
Ve (2], 23, 00th), 2ix) = gfR)), for every xe TN, Ky %y =

- erix and every i€ 411,2,e00yn%. From Lemma 1 it follows that

~y

%
A 11 Ki is admissible and since ;I_'1 K1 is a compact subset of
v = =
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Lﬁ By it follows that there exists xte 1./‘[_”_111'1 K1 which is &
fixed point of the mapping ft and from the definition of the
mapping f¥ 1t follows that Ji(xt)éJi(xi,iI) + t, for every
xieKi and every 1e41,2,+.0on}e The rest of the proof is as

in [17].

Now, we shall give an example of [ -admissible subset in

not necessarily locally convex topological space.

Definition 3. Let E be a topological vector space, 7 be
the fundamental system of neighborhoods of gero in E gnd K<E.

We say that K is of Zima ‘s type if and only if for every V¢ v
there exists U € U so_that:

(3) co(Un(K-K)c V.

Remark: If E is a locally convex topological vector space
then we can suppose that Usco U (convex hull of U) and so for
U=V (3) is satisfied.

Now, we shall give an example of a subset of Zima s type
in a paranormed space [18], Let E be a linear space over the
real or complex number field. The function || I*:E —>[0,)

will be called paranorm if and only if:

1. (xl* = 0e=sx=0, 2. l-xl*=U1xl*, for every xcE.

30 lx+yifclixi®s+ Uyl*®, for every x cE.

4, If Il x - x; I*—> 0 and r,—> ry thenlr x ~ r x I
— 0,
Then (E, | 1*¥) is a paranormed space and also a topological
vector space if the fundamental system of neighborhoods of ze-
ro in E 15 given by the family {V_l, o» Where V. = {xlx eE,

I x < rs,
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In [18) there is given an example of (E, || |*) and KSE
so that:

(4) Utx W2 ¢ () l xI*, for every t el0,1] and every xe& K-K.

In [4] we have proved that every subset K< E, where (E, || I*)
is a paranormed space and (4) is satisfied, is a set of Zima's
type in the sense of the Definition 3., Now let us give an ex-
ample of a nonlocally convex topological vector space E and K< E
s0 that K is of Zima’'s type.
Let 5(0,1) be the space of measurable finite functions

(classes) on the interval [0,1] with the parancim:
1

= ary, ix(t)ie &

1+ 1x(%))
It is known that S(0,1) is admissible. If t >0 let us define

the set Kt in the following way:

1 b0y = fo

Ky = 1%,%€5(0,1) and Ix(u)i< %, for every ue [0,115.
Then (4) is satisfied with C(K,‘) = 1 + 2t, Indeed, suppose that

x,yc Ky and that {x(u)ie X, {y(udic y. Then 1 + | x(u) - y(u)} <
£ 1 +26421 + 2t + (1 + 2¢)8 | x(u) - y(u)| and so:

(5) —_t £(142%) ——t———  uel0,1].
148! x(u)=y(u)i 14| x(u)=y(u)!

From (5) it is easy to see that C(Ky) = 1 + 2t,
Now, we shall prove the following Proposition:

Proposition. Let E be a Hausdorff topological vector spa-

ce and K be a closed and convex subset of Zima s type of E.

Then K is £ —admissible.

Proof: Let 7/ be the fundamental system of neighborhoods
of zero in E and A be a topological space., If F:A —R (K) is
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a compact mapping we have to prove that there exisis a fini-
te dimensional compact mapping Pv tA —> R (K), where Ve 7 ,
so that:

(6) Py(x)cP(x) + V, for every xc A.

—

Since F(A) is compact set there exists a finite set {xl.xa....
PRRTE 91 F(A) such that F(A) E%g {xi + U}, where &(U n
n(K - K))S V. If for every xcA, Fy is defined by:

Pv(x) = [P(x) + E-C.,(Uf\ (K - K)J N Ea’fxl.xz,ooo.xn‘s >

then, as in [4) , it follows that Fy is a finite dimensional
compact mapping from A into R (K) so that (6) is satisfied.
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