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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

REPRESENTATIONS OF COMMUTATIVE SEMIGROUPS
BY PRODUCTS OF METRIC O-DIMENSIONAL SPACES
Jifi VINAREK

Abstract: PFor every commutative semigroup (S,+) there
is constructed a collection {r(s)js e S3 of complete metric O-
dimensional spaces such that the following conditions hold:

(1) r(s + 8 ) is isometric to r(g)xr(s’) ,

(ii) r(s) is homeomorphic to r(s ) iff 8 = 8

Key words: Semigroup, representation, product, O-dimen-
sional space. ' ' ’

Classification: Primary 54B10, 54H10
Secondary. 20M30

Isomorphisms of products have been studied for varfous
algebraic, relational and topological structures One of
original problems was to find a topological space X which is
homeomorphic to 13 but not to 12. After solving this problem,
this question was investigated in special categories. A const-
ruction of an object X which is isomorphic to 13 but not to 12
is a special case of a representation of a commutative semi-
group by products in a category, investigated by V. Trnkovéd
and the participants of the Seminar on General Mathematical
Structures in Prague. A survey of this topic is given in [4].
Nevertheless, let us recall Trnkovd s result ([5]) that every
compact metric O-dimensional space X which is homeomorphic to

13 is also homeomorphic to 12.
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The aim of this paper is to prove the following:

Theorem, For any commutative semigroup (S,+) there exists
a collection {r(e);se s3 ot complete metric O-dimensional spa-
ces such that the following conditions hold:

(1) r(s + 8°) is isometric to r(s)xr(s’)

(i1) 1r(s) is homeomorphic to r(s’) iff 8 = 8~

Remarks., 1. As a special case of Theorem we obtain a com-
plete metric O-dimensional space X isometric to 13 but not ho-
meomorphic to Xz.

2., The theorem strengthens the Trnkovd's result 3. from
[3]: the same theorem is proved in [3], except the fact that
the spaces r(s) are O-dimensional. Nevertheless, the consiruc-
tion of O-dimensional spaces r(s) requires more subtle argumen-

tation.

I am indebted to V. Trnkovd for valuable suggestions and

reading the manuscript.

1, Conventions and notetions. We shall use the symbol ~~

for a homeomorphism, = for an isometry of spaces. Since the
construction needs also metrizability of infinite products, our
basic category C will be that of complete metric spaces with a
diemeter £1 and contractions (i.e. Lipschitz mappings with a
Lipschitz constant £1). This category has all products (deno-
ted by 1T , or x for finite collections) and all coproducts
(denoted by L ), Actually, if I is a set and {(X_,@,); t e I}
is a collection of objects of C then J;TI (X, pu) = (LTJI XL’SD)

where So((xL dee1? (¥, )LEI) = BUp .1 @®.(x,,y, ). Moreover, one can
see easily that the functor % :C —> TOP assigning to each metric
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space (x,go) a topological space with the topology induced by

fb , preserves finite products (end all coproducts).

2, Denote by N the additive semigroup of non-negative in-
tegers and by N%® its e=-th power, i.,e. the semigroup of all the
func tions on o¢ with values in N, where the operation + is defi-
ned point-wise. exp N is the semigroup of its subsets with + de-

fined by
A+A ={a+a'jaecr, a’cAr’},
Denote by N* the set of all the positive integers.

By [4], any commutative semigroup S is isomorphic to a sub-
Jﬂ'o,ce.rd S
semigroup of exp N « Hence, for a representation of any
commutative semigroup by products of complete metric O-dimensio-
nal spaces, it is sufficient to construct for any subset A of

Js'o,card S
N a complete metric O-dimensional space X(A) such that

the following two conditions hold:
(1) X(A + A") = X(A)=X(A")
(i1) X(A)~ X(A") 1f£ A = A~
Since the distributivity of finite products of objects of C

is fulfilled, it suffices - due to Trnkovd s result ([4]) - to
$°,card S
construct for any function fe N

mensional space X(f) with a diameter £ 1 such that for every f,

#,ecard S . ,ccard S
geN and A,A &N the following conditions hold:

a complete metric O-di-

(1) X(f + g) = X(2)=X(g)
(2) 11 (h%A X(h)) is O-dimensional

2““' Concl S
) s (s X)) ~ o o (wea X))
iff A= 4"

where .L‘.,Lc Z denotes the coproduct of 2% copies of Z.
2
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(Having constructed X(£) s satisfying (1)-(3) one can put

X(A) = 1l

1l X(2)). Clearly, conditions (i) and (1ii)
2“0'Ms(§EA )

are satisfied.)

Trnkovd s general method for comstructing such X(f)’s is
the following: find a collection -(Xa;a € Eo.card St gf objects
, g .card S
of a given category such that for every A,A &€ N ° the

following condition holds:

ne)y
) wHands (3a acdlcamas Za - )

reardS \fce A

f£(a)
Then one can define X(f) = we;lz dS X and easily

]

. k(a) - A’
~ l“.u. ( A a,cj;?co)uiS X ) 1fL A = A,

check (1) and (3). Since arbitrary coproducts of O-dimensional
spaces in C are O-dimensional, but producis of O-dimensional
spaces need not have this property, it will be necessary to pro-
ve O-dimensionality of spaces X(f), too.

3. Construction. Let Cn be the class of cardinal numbers.
Denote by 7 the first ordinal with card y*= s .card S. For e-

very a € * choose a set B, = (ﬁa'n;nsn"}g Cn such that the

following conditions hold:
2¥< Bo1s Ban<hP i B 1>(sup {PB,;b<al)?
0,1 a,n a,n+l’ a,l b¥

where (3, = sup {f3, n;neN*%.
’

Denote

374
+co =y 21 - 1 21
B ga,g—;Ba' Let C = T0,10\ U, 20, 1 3 ? 30 I

be the Cantor set (with the usual real-line metric),

¢, =[2.37, 37" 0nc, D =£2.3ne N} L 10} (again with

the usual metric.
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For every a € y* define a metric space xa by glueing ﬂa n
’

coples of C to the point 2.3 0f D (as shown in the picture).

B [3&. 1
/3 I‘*—’?ﬁ—\ 1 1 eee 1
a,n 1 1 1 e e °
3 3°°3 A y
3—n+1 3-n+.-1_ 3--n+1 ° P ° . : ;
° . . ' . : P . .
’ - ’- " : I' : : .’
: — L . ; \ : .
. . B N
-n 2 2
o eee 2 03 . 00 § 3

More precisely, X, = (i;, @g) where
X, = (6N $2.3773) = Ba,n)vDs

@a(X¥) = | x = y| whenever x,ycD,

/Sx—y| if x,ycC  and oL =3

Ix - 2,371 + 12.3™ - 2,370 &+
+ly - 2.3
if xecn, yccm and n4m or £+ 3>

Qa((X.oc),(y. {3 )) =

Pal(Xy)yy) = Ix = 2,371 + 1y - 2.371 4 x€C and ye D.

Denote |l I :X,—>C by lxll = x whenever xeD, My, )l =¥
whenever (y,«)e X\ D,

One can check easily that every X, is a complete metric
O-dimensional space with diam X, = le It remains to prove (x)

and O-dimensionality of X(f) = wT‘TT xz(a) for every teN?Y .
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4, Recall the definition of a dispersive character (cf.
{2]1): Let y be a point of a topological space; then a dispersi-
ve character A(y) = min {card V; V is an open neighbourhood of
yi.

Using dispersive characters we can introduce the following:

5., Definition. Let x be a point of a topological space.
Then a dispersive type T(x) = M {{A(y);ycU%; U an open neigh-

bourhood of xi.

6. Observation. If X, Y are topological spaces, xcX, ye Y,
then A((x,y)) (in X xY) is equal to the product of A(x) (in X)
and A(y) (in Y).

Te TFor any f: y —> N denote by L(f) the set {(a,1); a €y,
1€4l,¢04,f(a)i$ . By the associativity of products there is

- £(a) _
X(f) a.«gr X, (a,i)ch4) X,. For any (a,i) €eL(£) denote

by Tg,i the corresponding projection of X(f) onto Xa.

8. Lemma, Let xe X(f) be given such that there exist &’ > 0
with the following property: | ":n‘a 1(x)" - 2,3™| 2" for any
’
(a,1)eL(2), ne N,
#4 card Af
Then A(x) = (2 %) where A, ={azf(a)+03.
Proof, Any non-empty open gset in X has cardinality at

rAf

*o T
least 2 °, Hence, A (x)2(2 ) « On the other hand,

card{yex §>8.(Jra 1(X)y y)<d} =2 o for any ac A a.nd

card Af
1€41,...,2(a)} and card iye X(2); @(x,y)<d3 = (2 o)

Q.E‘D.

9. Lemma. Let ae 3 and geN?’ be given such that
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g(a’) = 0 for any &’z a. If x¢ X(g) then »~(x) & B,.

Proof. By the construction, card X, = Ry forany be 3.

Hence, card X(g) ,eb'lja Bp< Ba,1» A(X) < [55,1» &nd therefore

&(x)¢B,. Q.E.D.

10, Lemma, Let a € ¥ and he ¥ be given such that
h(a’) = 0 for any a’< a, x€X(h). Then A(x)4B,.
Proof. Let V be an open neighbourhood of X, b>a, i€ {l,...
eeeyh(b)}. Consider two cases:
(1) arb’i(V)nD = g, .
Then card I (V) = 2 9,
b,i
(ii) J’rb'i(V)r\ D#@.
Then Jr‘.b'i(V) contains a neighbourhood W of a point 2.3 8¢

~

€ X, for a suitable n. I;Le[r}rc;e. card "rb,i(V)Z card W= ﬁ’b,n’ ﬁa'
Obviously card V= TT TT, card ar, (V) and either card V =
%, card Ay ey i=1 b,1
=(2° < ﬂa,l' or card V7Ba. Therefore, either card V>
> ('éa for any open neighbourhood V of y and A (x) > /3a, or
¥
card V, = 2° for some neighbourhood V  and Alx) < ﬂa,l' In

both these cases A (x)¢ By. Q.E.D,

11, Lemma, Let fe A, aecy , neN"’, xe X(£). Then (Sa n€
1]
e T(x)&=> 3 je{l,..0,2(a)} such that arg, 5(X) = 2,377,

Proof., A, Suppose that :n'a,d(x) = 2,3, Let V be an ar-
bitrary open neighbourhood of x; choose a positive integer p auch
that {23 @(z,x)éB'prV. Define v€ X(£) by the following formu-
last a1y 5(v) = 2,377 and for (b,1) 4 (a,3) there is: ay 4(v) =

,
-P. =P
= er,i(x) if Sop(ﬁb'i(x),D)ZB ’ Jfb’i(v) = (3 ,0) it

i\ m’b'i(x)\l < 370, JT.b’j(v) =(r + 3 P,«) 17 "er,i(x) ) > 3°P
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and 0< @ (a4 (x),D)< 3°F where p,1(x) = (I 7y 3(X)H ),
r = max (Dn [0, || er'i(x) 13)y; :er,i(V) = (r + 3"P,0) 1t
ary, 4(x) = rED, r> 3°P,

Obviously, @y( :”b,:l.(v)’D)?_ 3—P"1 for any (b,1i)=*+(a,j) and
gc(v,x)_é 3"? (hence, ve V). Denote Ap = A, it f(a)>dlA,A; =
= AN\{al 1f f(a) = 1. By 6 and 8, A(V) = (2°) fefyn=

= fga’n. Hence, ﬁa'ne'v(x).

B. Suppose that T, ;(x)+2. 372 for any 1€41,...,2(a)3.
Denote M~ = 41; or a,i(X)€ D\ {03}, M" = {i; o i(x) =0f%,

M= 4{l,ee.,2(a)f\ (MUMN"), €= min ({5 a i(x);iem ‘3
Uipglarg 4(x),D); 1€ Miuis™y), U = {25 p(x,2)< €% . Let ye
€ U be an arbitrary pointj denote y; = (arb,i(Y))b<a,1£iéf(b)
Yo = (g 13N yeprr ¥3 = (g (3)gemn » ¥4 = (g 33 )geye
V5 = (Ip, 10 pra,14442(b)°

By Lemmas 9 and 10, A(yl)#[}a ot A(ys)#ﬁa ne Obvious-
Ly, &(yy) = (20)08rd M + -

It 1€ M’ then either ar, ) = T y(x) = 2.3™ (where
mq;n) and A(ar, i(y)) = [Sa m? O Ta, 1(¥)¢ D and A(cna 1(¥))=
= 2°°, Observation 6 implies that &(yp) = max {4 (v, (y); 1€
eMIER

For 1€ M" one must consider three cases:

(1) 7y 4(3) =0

(11) oy 4(y) = 2,370

(141) v, (3)4D

In the case (i) there is A( :rra’i(y)) = [53# /aa,n‘ in the
case (ii) there is A(ara’i(y)) = ﬂa’m4=pa'n (since So(x,y)<
< 3™ and ag,1(X) = O, there is m>n); in the case (iii) there

%

is A( .ﬂ‘a j_(y)) =29, Consequently, one obtains by Observation
’

. 722 -



6 that A(yj)#pa’n. According to 6, A(Y) = A(Fy) + A(¥) .
- A(N;)-A(n,)'b(yS)*ﬁa,n’ Hence, ﬂa,n¢ z(x). Q.E.D.

12, Denote ﬂ) ={xeX(A); T(x)nB = @#i.

Now, we can prove the following:

A~
13, Lenma, If f€A, xeX(f) then xeX(A) iff for every
a €y and every ie{l,...,t(a)}:ary'i(x) is not in D\{ 013,

Proof follows from Lemma 11,

14, For every open U@ define F(U): ¥ —> N by F(U)(a) =
= sup {card (¥ (y)nB,)syeUf,

Then for every xef(T) define F(x): ¥ —> N by M(x)(a) =
= min {F(U)(a); U an open neighbourhood of xf,

15, Lemma. PF(x)(a) = card{iy ora'i(x) = 0% for every xc
€ X(A).

Proof. Denote J = {1; ara’i(x) = 0}, card J = k.

a) Let U be an open neighbourhood of x, ye U such that for
any jeJ there is Jr, ,(y)eD\10} with IF1'=> g 4(3) *

# 3, 3 (y) and 7, ,(y)¢D for any j§J. By Lemma 11,
card (U(y)nBa) = k and *(U)(a)= k. Therefore, F(x)(a)= k.

b) On the other hand, denote €= min {p ( arg,3(x)eD)s
Jeil,.es,2(a)¥\J % Let U be an open neighbourhood of x such
that Us{z; o(z,x)< €%, yeU, Clearly, ara'j(y)¢n for every
Jedlyees,2(a)INJ. By Lemma 11, card (2(y)nB,) £
£ card ({ﬂa'i(y); 1= 1,00e,8(8)3Nn(D\103)) £k, Henco,

F(U)(a) £k for arbitrary sufficiently small U and P(x)(a) ~k,
t00.

Pt
16, Lemma, If x&X(f£)AX(A) such that, for every a € ¥
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and every 141i<1f(a): Iy i(x) is equal to O, then F(x) = f,
’

Proof follows firectly from Lemma 15,

o~

17. Define X(A) . = {xeX(A); 3U an opm neighbourhood

of x such that for every ye X(A)n (UN\{ x%) there exists a € ¥
such that F(y)(a)< PF(x)(a)}l.

18, Lemma, ][(A)max -{xeim; sra’i(x) = 0 for every
(a,1)%.

Proof. a) If :’ra,i(x) = 0 for every (a,i) then for U =
= {23 go(x,z)< 1% and ye UN\{x3 there exists a couple (a,i) such
that :n’a’i(x)*o. By Lemma 15, F(y)(a)< F(x)(a). Hence,
xeX(A)max.

b) Suppose that there exists a couple (a,i) such that
gra'i(x)=#0. Since x¢ 1’1(7\/), according to Lemma 13 :n’a.i(x)¢D
and :fa’i(x) = (u,cc) with ueC\ D, Since C has no isolated
point, for any open neighbourhood U of x there exists ye U\{ix3
such that Jl’a’i(y)¢D and for any (a’,1")#(a,1) there is
.‘Yl‘a, L4 (y) = Jra,,i,(x).

One can see easily that ye X(A) and F(y) = F(x). Herce,
x¢X(A), o Q.E.D.

19, Proposition. A = {F(x);x eX(A)max§.

Proof follows from Lemmas 16 and 18,

20, Corollary. If A%A’ then F(A)4vF(A").

Proof follows directly from Proposi tion 19.

21, Before proving O-dimensionality of X(A) recall the
following:

Lemma. For any point ce€ C such that 3"ceN the set
- 724 -



fdec; la - el£3 ™1} 15 equal to §deC; Ja - cl< 2,37 2717,

Proof. The construction of the Cantor set C implies that
PoeN=>Tc + 3%, ¢ + 2.3 [ ne =g,
Je - 2,32, ¢ = 371~ ¢ = g, Hence, §deC; ld - ci <
<2.3713 2 faec; la - ol 237713, Q.E.D,

22, Proposition. X(A) is & O-dimensional spdce,

Proof., It suffices to prove that there exists a & -local-
1y finite clopen basis. For every ne XN put Pn ={xeX(A);

-n-lg ixe

3? Karg,g(X) e ¥ for any (a,1)}, B, ={{yip(y,x)£3
€P %

If x, z ere distinct points of P then Sb(x,z)?_B'n >
> 2.3'“'1. Hence, .'an is a discrete system, Lemma 21 implies
that any element of %, is clopen,

Let U be open in X(f)c X(A), zeU, neXN such that
{yiply,2)< 3™ "jcy, For any a e y , 14<1< f(a)define Xy 4€ P

i3
such that @,(x, 4, :!r’a'i(z))é 3781 (3@ "xa,i" is the closest
integer to 3" |l o i(z) I o Denote by x the point of X(f) with
’

He,1(X) = X 4 for any a ey , 1£1<12(a), V, ={y; @(y,x) £
<3 l1ep ae Obviously, £23cV c{y; @(y,2)< 3™ U and

UV _=TU,
xeu 2z
Therefore, 3 ’,,,,L'e)sz’n is a &'~discrete clopen basis and
X(A) is O-dimensional. Q.E.D,

23. Corollary 20 end Proposition 22 finish the proof of

Theorem,

24, Remark, In [1], sum-productive representations of or-
dered commutative semigroups are investigated., The above const-

ruction and results of [1] give immediately the following result:
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For every ordered commitative semigroup (S,+, £) there ex-

ists a collection {r(s);s6€ S} of complete metric O-dimensional

spaces such that the following conditions hold:

(1) r(s + 8”) is isometric to r(s) r(s’);
(i1) r(s) is homeomorphic to r(s’) iff s = 8°;
(ii1) r(s) is homeomorphic to a clopen subset of r(s’) iff

r(s) is isometric to a clopen subset of r(s’), and this is ful-
filled iff 848,

(m

[2]

[3]

(4]

€51
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