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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

A LOGICAL ANALYSIS OF THE TRUTH -REACTION PARADOX
Kamila BENDOVA and Petr HAJEK

Abstract: A logical paradox that originated in discussion
on ArtIficial Intelligence (AI) is analyzed by means of arith-
metization of metamathematics. The purpose is to isolate places
where the apparent paradox disappears when notions occurring in
it are understood as formal arithmetical notions and, secondly,
to show how double use of self-reference in the paradox can be
formalized,

Key words: Paradox, self-reference, Peano arithmetic, arti-
tictal TateTITgences ' ’ ’

Clessification: Primary O3F30
Secondary 03B45, 68G99

§ 1.Introduction. The paradox in question was first formu-
lated by Cherniavsky [ 1] in context of discussion on the diffe-
rence between the reasoning of the man and the machine, His pre-
sentation is rather hard to understand; fortunately, the paradox
wes simplified and clarified by Havel [ 4] who called the paradox
the truth-reaction paradox. Havel's aim was to contribute to the
discussion mentioned above. In this paper we disregard complete-
ly the context of AI, take the paradox as it stands and look at
it through the eyes of mathematicel logic. This means that we
replace intuitive notions involved in the paradox by formal no-
tions (which can be done in various ways) and try either to show
that a particular formal theory is inconsistant or to isolate
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places where the would-be proof of a contradiction is not a
proof and cannot be converted to a proof, This seems to be the
professional duty of a mathematical logician when facing a pa-~
radox, (Needless to say, such an analysis does not mean that
the paradox, formulated in intuitive terms, is meaningless or
uninteresting.) We shall present such an analysis and show two
possibilities of formalizaticn inside formal arithmetic. The
first one, based on the notiona of provability, is simpler, but
disregards the fact that the paradox uses two sorts of self-re-
ference: first (usual) self-referential sentences (sentences re-
ferring to themselves) and, second, self-referential proofs
(proofs referring to themselves), This second kind of self-refe-
rence seems to be new and the classical diagonalization lemma of
Godel-Feferman does not enable us to constiruct self-referential
proofs, (The recursion theorem is the appropriate means for this,)
The analysis results in a construction of a partial recursive
function that formalizes attempts at constructing a proof of

a contradiction; we show that all attempts fail.

The reader is assumed to know the elements of arithmetigza-
tion of mathematics and of recursion theory. Knowledge of the
papers by Enderton [ 2] and Smorynéki [ 5] from the Handbook of
Mathematical Logic is more than sufficient for the present dis-

cussion,

§ 2. The Paradox. In this part the Cherniavsky-Havel Truth-
reaction paradox will be briefly described. (For details see
[1,[4).)

Consider an informal theory with two binary predicates E
and 7, two axioms Al, A2 and an “evidence rule" Ev,
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?(x,y) (usuelly writien xTy) describes the experimental situati-

on where some subject (either a human or a computer) accepts the

text y as true after analyzing the text x. E(x,y) (written xEy)

means that x includes evidence for y.

Al,

A2,

1.
2,

3.

5¢
6.

xBy — xTy
(If x includes evidence for y then the subject accepts y
when knowing x.)

xE(xTy—>1y) —> 1 (xTy)

(The subject does not want to be in contradiction with rea-
1ity, more precisely: the subject will never acoept a sta-
tement 1f this very act of accepting would make the state-~
ment false.)

If you, after being exposed to x, feel convinced of y then
xRy .

The particular case important for us is the followling:

If x contains a proof of y then xEy., Havel does not specify
the notion of proof involved here; he merely says "what is
a proof for us (e.g. for the reader) should be an evidence

for the sudbject, too."
The truth-reaction paradox follows.

Let 4 denote the text of this proof (lines 1. through 8.)

s = " (4%s) (self-referential definition of a
sentence s)

aTs — 1 s (directly from 2.)

4E(4dTs — 1 8) (le-3. 18 a proof of 3, - thus 4,
follows by Bv)

1(are) A2 applied to 4.

s by 2. and S,
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7. dEs (1.-6. is a proof of & -

7. follows by Ev)
8. dEs & 11(daTs) (5. and 7., put together)
And 8, contradicts Al,

In Havel 8 theory variables range over texts (they might

be called text variables); formulas are particular texts and
if x 18 a text and y is a formula then both xTy and xEy are for-
rmulas, thus particular texts. Note that proofs (from some axioms)
are also particular texts. This suggests treating Havel’'s theory
as a kind of propositional calculus or, better, text caleulus

with usual formation rules for propositional formulas enxriched
as follows:

(1) Any finite sequence of symbole is a text

(2) If x is a text and y is a formula then both xTy and xEy are
formulas.

(T and E may be understood as some modalities.)
Consider a simplified particular case where T and E are i-

dentified and made independent of the first variable. Thus va-

riables are propositional variables and T becomes necessity 1
(Al) is trivialized,

(A2) obtains the form (DA —>"1A)—OA

Ev says "if A is provable then infer [J A", which mey de under-
stood as necessitation: from A infer (1A,

One further assumes

(A0) all propositional tantologies and

the existence of a particular propositional fomula be-
ing a fixed-point of the modality "l
(Pp) 9q="104.
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Theorem 1. Axiems (AO)e«(A2),(Fp) together with modus po-

nens and necessitation form a contradictory modal theory.

(The paradoxical proof above amounts directly to a proof
of a contradiction.)

Remark 1, This shows, in particular, that (A2) in the pre-

sent form is not provable in the modal system G of [ 6],

§ 3. Arithesticsl dnterpretations. Our general approach is

as follows: We let variables of Havel’'s theory range over fini-
te sequences of symbols of the language of Peano arithmetic PA,

hereafter called PA-iexts, The notion of provability involved in
(Ev) will be made precise as meaning PA-provability (provabdility
in PA). For each PA-text 5 we have its code (formalization) "s7
which is a particular term describing s in PA,

An interpretation of Havel’s theory will be any pair e(x,y),
T(x,y) 0of PA-formules having (at most) two free variables; T in-
terprets T and ¢ interprets E., Havel s axioms become axiom sche-
mes: For any PA-texts 4, s, we have
(A1) e("a7,"8") — 2 ("2, 8")

(A2%)  e(a7, "z(Ta7,"8') — 1 8') —> 1w (2", 8")
(Note that for each text s, 71 s is also a text; if a is a formu-

la then s is a formula,)

Let 7’ be a theory containing PA, The interpretation is sound
in 7 12 (A1*) and (A2*) are provable in J (for each choice of
d, s) and if the following holds (the rule Ev):

If 4 18 a PA-proof of a formula s then T e(ra7,"s7).

We shall exhibit some interpretations sound in some theories
and net sound (111) in some others. In each case we shall show how
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the construction of the paradoxical would-be proof im formalisg-
able and isolate the exact place where the exact place where

the formalization is not a proof of contradiction.

To close this section, let us recall some facts about PA

used in the sequel (see [4]):

Pact 1 (Diagonalization lemma)., Let 3 be a PA-formula with
one free wvariable. Then there exists a sentence @ such that

g =M.

Fact 2 (about Zl-untoncu). Every true closed Z'l PA-for-
mula is a theorem of PA, (A PA-formula is Zl if it has the form

(3 x)y¥ where all quantifiers in ¥ are bounded, see [4].)

Pact 3, PA is consistent since it has a model (the standard

model of natural numbers).

§ 4. An analysis based on provability. In the first inter-

pretation we ignore the self-reference to d and identify T and E
as one unary predicate., The predicate T (= E) must be interpreted
in aceordance with the evidence rule, i.e. if there is a PA-proof
of a then T("8?) must be provable. Therefore we interpret T as
Pr(x) where Pr(x) is the standard predicate of provability in PA,
i.e. for each PA-sentence ¢ we have
PAr@ iff PAF+ Pr(Tg97).

More generally, if 7 1is an axiomatized extension of PA then
Prg,(x) denotes the standard provability predicate for J ; thus
Pr(x) is the same as Prp,(x).

Thus this interpretation is sound in a theory T if we have
the following:
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A2y T Pr(rPr(rgp*') — a1 g)—> 0 Pr("e)
(Ev) If there is a proof of & in PA then T + Pr(p™).

The paradox translates to the following sequence of PA-formules
2 @ =1 Pr(rgf‘) where ¢ 18 a particular senteice of PA such
that PA -9 = 1 Pr("¢"),

3% Pr(TpT)— g

4%y Pr(Pr(Tg) — 9")
5% 1Pr(T;

6% @

77 Pr(e7)

8, 1Pr("g7) & Pr(TeT)

Theorem 2. The interpretation of T and E by Pr is not sound
werete PA.

Proof. The axiom (Al) is proveble in PA due to identifica-
tion of T and E. (Ev) is true in PA by Pact 2, since Pr(x) is a
p3 1~formula.

Let us now suppose that (A2) is provable for every formula
¥ o This means

PA- Pr("Br(Ty7) —> vy ) —> 1 Br(Ty7)
for every y* , especially for the sentence & for which
PA o= Pr(Te7),
Then in PA all steps in the Paradox are provable and we have a
proof of contradiction on PA which is not possidle (Fact 3.).
Thus the axiom (A2) is not provable for every formula y

Theorem 3, The interpretation of T and E by Pr is sound

wer.te PA + COnl,‘ where Conp, is the sentence formally expressing
consistency of PA,
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Proof. Note that 1f ¢ {a g PA-gsentence then
PA + Conp, F T Pr(Tp?)y 1 Pr(Tg 7).

We want to prove

PA + Conp, - Pr("Pr("¢™) —> 7 97 )—> 7 Pr("pM).
We have
PAF Pr(Pr('@T) — 11 ¢") — (Pr(Pr(e ")) —> Pr(Tg’ )
PAr- Pr(Tg") — Pr("Pr("¢")")
by the properties of Pr(x).
Thus we have
PA, Conp,, Pr( Pr("") — 1¢7), Pr(T") - Pr(THg” )
which implies provability of (A2™),

Corollary (Godel second incompleteneas theorem). PAyCon?‘.

Immediate from Theorem 1 and Theorem 2,

Remark 2, Comparison with a proof of second Godel’s in-
completeneess theorem, e.g., in [ 5] makes obvious that the present
proof is by no means a new proof of this celebrated result; it
merely shows that the analyzed paradox - in the present inter-
pretation -~ involves the same reasoning as that used in the

proof of the second Godel s Theorem.

Fact 4. Comnsider the theory PA + A2 where A2 is the axiom

schema as above, We have PA + A2 |— ConPA.

Proof. Let ¢ be a sentence such that
PA F @ = 1 Pr(T9");
then PA — Pr("™Pr("g") —> 1¢"') by Fact 2.
and thus
PALA2 - 7 Pr(")
i.e.
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PA,A2 + (3 x)(Fml(x) & 1 Pr(x))
which i8 a sentence equivalent to COnPA.

Remark 3, We saw in the proof of Theorem 1 that the se-
quence (2°)-(8°) is not a sequence of formulas provable in PA:
we could not use (A2). Now, (A2) is provable in PA+Conp, (and
PA+Conp,, 1is consistent); filling the details makes (2°)-(6")
into a (PAM}onrA)-proof. But this does not entitle us to con-
clude Prp, ("p’), but only that Prp, . ("9’). Thus this is the
place where the "proof of contradiction" collapses. (In fact

we obtain a (PA+Conp,)-proof of Prp, oo ("07)& 1Prp, ("p").)

Remark 4. The reader can eagily see that if we change our
notion of soundness of (v ,¢ ) by postulating
(EBv’) Ifdis a (PA4Cony, )-proot of & then Tr+e(Ta","8") then
the interpretation of T and E by PrPA-fCon?A(x) is not sound
w.re.t. PA+Conp,; similarly for other theories J =2 PA.

Similarly, the reader may verify that if Pr.‘[,A is teken for
€ (to interpret Havel s E) and T(x) is any formula of the
language of PA such that PA + (V x)(PrPA(x) —> 7 (x)) then the
corresponding instance of A2 is unprovable in PA, (If we had
such a proof then the paradox would yield a proof of contradic-
tion in PA,)

§ 5. An analysis based on the notion of proof. The inter-
pretation of Havel's E (and T) presented in the preceding secti-

on does not depend on the first argument of E (of T) and there-
fore the diagonalization over proofs is disregarded. Here we
shall imitate the paradox more closely.

First realize that it is trivially impossible for a text
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to contain itself as a proper subtext; the reference of a proof
to itself is only possible by means of an appropriate descrip-
%ion of a proof and not by gquoting the whole proof in a part of
itself.

We could identify descriptions of finite sequences with nullary
Turing machines. If such machine 4 converges and produces an
output 1d} = s then it is a successful description of s, if it
diverges ({d% is undefined) then d fails to describe a symbol.
Hore generally, the description may have some finitely many
nteps, say 9. Such a description may be best understood as a una-
ry Turing machine @ for which we are interested only in values
1d%(0)3433(1) yeeesfd?(8)s If all these values are defined then d
successfully describes the word 8 = {1d3(0)* +.s.. x 14%(8) (where
X 1is the sign of concatenation); if 4 fails to describe a word
in 9 steps we may at least ask whether 4 has succeeded to des-
cribe a word in (say) three steps, i.e. whether 14d3(0), {43%(1),
£4%(2) all converge and if so, we can investigate the word
{a3(0)x {a¥(1) x {a3(2).

We sheall understand the paradoxical "proof" as a descripti-
on of a binary Turing machine h that processes (mentions) each
stepwise description 4 of a proof (successful or failing) and
tries to describe a new proof (in 9 stepa)

{n3(4,0),4n3(d,1),... {h3(4,8).
By Recursion Theorem, we then investigate an arbitrary d such
that
1n¥(4,1) & 143(4)
for each 1 (= 0,1,..s 8). This will mean that the proof descri-
bed by {d43(0), 1d%(1)y... mentions itself,
Havel s predicate E (identified with T throughout) is most
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naturally interpreted by postulating that e(x,y) says x 1is

e sequence and contains a proof of y, i.e. y is one of formu-
las (not necessarily the least one) ocourring in x:
Prvl,A(x,y)_=_ x i8 a sequence & (3 w) (w is a subsequence of x &

% w 18 a PA-proof of y).

Convention. d"n denotes {d3(0)* seex{ di(n-1); this va-
lue exists if and only if all values {d3(0),... $d%(n-1) exist.,
Prvl,A(x"y.z) is assumed to mean: for some ylé Yo x"yl exists,
say, x"y; = w, and PrvPA(w,z). Note that for each particular
n, PrvPA(x"ﬁ,z) is a Zl-fomula..

—_ foos |
(Here 1 is the n-th numeral, i.e, the tem olt-= b n-times’)

Construction., We define a Turing machine h by describing
its behavior for arbitrary first argument d and for second ar-
gument i = 0,1,... 8. $h3(d,1i) for 1= 9 is irrelevant (sey is
0). The definition parallels steps in the Truth-reaction para-
dox, the first step being postponed: it will consist in an ap-

plication of the Recursion Theorem.

i = 0: Given d, the machine h constructs a self-referential

sentence s such that
PAL B8=1 PrvPA("d""Q,"s"‘)

and outputs a PA-proof Py of the last equivalence,

1 = 1: {h¥(d,1) prolongs p, to & PA-proof p, of
Prvp, (7a'"9,"8Y) —> 1 8;
this means that if we denote p x ih} (4,1) by p;, then
P, is & PA-proof of PrvPA(rd"'@,rs") —> 1 8. The last
implication will be denoted ANT; it will be used in the

antecedent of an instance of A2,
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1 = 2 (Pirst £111ing): h searches for a PA-proof of
Prvp, (Td7"3, "ANT");
1f 1t succeeds then the found proof is ih} (4,2); and
we put p, = py*1h3(4,2). If 1t fails then 1h3(4,2) is
undefined (as well as {h%(d,1) for alli i>2), (Similar-
1y for other filjings below.)

Convention : The word "proof" (underlined) will have dou-
ble meaning in the discussion below; at the moment, think of
PA-proofs.

i = 3 (Second filling): h searches for a proof of
Prvp, (7a7"9, ANT") —> 1 Prvy, (7a™5, s ")
which is an instance of A2; 1f successful the found proof
is 1hi(d,3) and we put Py = pa*{lﬁ(d,B).
113(4,4) prolongs py to & proof of ﬂPrvPA("d"'@,"a");
we put p, = Py % {h3}(4,4).
i{n%(4,5) prolongs Py to a proof of s (using the equiva~
lence in i = 0); we put pg = p4*{h§(d,5).
i = 6 (Third £11ling): h searches for a proof of
Prvp, (Ta7"9, 87
if successful then 1h3(d,6) is the found proof and we
mt pg = pg¥ 1h%(4,6).

1 = 7: ih%4,7) prolongs py to a proof of -1s; put
P7 = Pg* 10¥(4,7)
i = 85 {h%(4,8) prolongs p; to & proof of s &1 s,

End of definition of h,

Convention. In the sequel, d will denote an arbitrary Tu-
ring machine satisfying the equation
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{h¥(a,1) ={fai(1)
for each 1 = 0,1,... 8. (Existence is given by Recursion Theo-

ran.)

Fact 5. PFor every choice d according to our ecsavention,
d"3 exists and is a PA-proof. (There is a first filling.)

Proof. We know that p, is a PA-proof of ANT and that
P = {n3¥(a,0)* {1h3(d,1); since {d3(1)X 1h3(d,1) for 1 = O,.es
eee 8, d"2 exists and equals Pye Thus the formula
Prvp, (77", "ANT') is true and therefore PA-provable (being a

= l-fomula.) .

Fact 6, If "proof"” in the construction means "PA-proof"
then for each d, {d%(3) is undefined; the instance of A2 in que-~
stion is not provable in PA., (Thus d"4 does not exist; there is

no second filling.)

Proof. This is because if there were a second filling then
there would also exist a third filling (see i = 6 in the const-
ruction), since Py would be a PA-proof of s and Py = d"5; thus
PrvPA("d"'@,"s“‘) would be provable., Thus in that case d"9 would
exist and would be a PA-proof of a contradiction.

Theorem 4. The interpretation of T and E by Prvp,(x,y) is
not sound in PA, (Immediate from Fact 6.)

Fact 7. Axiom A2 is provable in PA-»ConPA.

Proof. In (PA+Conp,) assume Prvy,("p”, Prvp, ("p’,"8") —
—> 1 87) and Prvp,("p',"87), Then
Prp, ("Prvp, ("p7,787)), Prp,(TPrvp,(Tp7,"8') — 1 87),
hence Prp,(™87), But Prvy,(p?,"s") implies Pr;,(7s™), so we
have Pr("s%-1s'), a contradiction.
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Theorem 5. The interpretation of T and E by Prvy, (x,y)
is sound w.r.t. PA+Conp,. (Immediate.)

Remark, Similarly as in § 3, we can try to underatand h
as a function trying to construct a proof of a contradiction
in PA+ConPA. For this purpose, we shall understand the word
"proof" (underlined) in the construction as "(PA+GonEA)—proot".

Fact 8. If the construction of h is modified as Just said
then d"6 existis and is a (PA+ConPA)-proof, but for each d,
£a%(6) diverges thus dA"7 does not exist. (There is a second fil-
1ling but there ie no third filling.)

Proof. This follows from Fact 7: A (PA+Conp,)-proof of
A2 is a second filling. Therefore there can be no third filling
since otherwise the construction would produce a proof of con-
tradiction in (PA+ConPA). (Let us mention that in the present
situation pg iz a (PA+Conp, )-proof and therefore also €a¥(n),
but 1t is not a PA-proof. In the second filling, the axiom
Conp, is used in a substantial way.)

Thus the Truth-Reaction Paradox does not give us any proof
of inconsistency in PM-ConPA because, as we have just seen, the-

re ie no third filling.
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