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COMMENTA HONES MATHEMATfCAE UNIVERi>ITATIS CAROLINAE 
23,4 (1982) 

A LOGICAL ANALYSIS OF THE TRUTH REACTiON PARADOX 
Kamilo BENDOVÁ and Petr HAJEK 

Abstracts A log ica l paradox that originated in discussion 
on Art i f i c ia l Intel l igence (AI) i s analyzed by means of ar i th-
metiasation of metamathematics* The purpose i s to i s o l a t e places 
where the apparent paradox disappears when notions occurring in 
i t are understood as formal arithmetical notions and, secondly, 
to show how double use of self-reference in the paradox can be 
formalised* 

Key words: Paradox, se l f -reference, Peano arithmetic, a r t i -
f i c i a l i&tel i igenee• 

Classifications Primary 033?30 
Secondary 03B45f 68G99 

5 1 * In tro due t ion* The paradox in question was first formu­

lated by Chernlavsky I 1] in context of discussion on the diffe­

rence between the reasoning of the man and the machine* His pre­

sentation is rather hard to understand! fortunately, the paradox 

was simplified and clarified by Havel [41 who called the paradox 

the truth-reaction paradox* Havel'a aim was to contribute to the 

discussion mentioned above* In this paper we disregard complete­

ly the context of AI, take the paradox as it stands and look at 

it through the eyes of mathematical logic* This means that we 

replace intuitive notions involved in the paradox by formal no­

tions (which can be done in various ways) and try either to show 

that a particular formal theory is inconsistent or to isolate 
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places where the would-be proof of a contradiction is not a 

proof and cannot be converted to a proof* This seems to be the 

professional duty of a mathematical logician when facing a pa­

radox, (Heedless to sayf such an analysis does not mean that 

the paradox, formulated in intuitive terms, is meaningless or 

uninteresting*) We shall present such an analysis and show two 

possibilities of formalization inside formal arithmetic, fhe 

first one. based on the notions of provability, is simpler, but 

disregards the fact that the paradox uses two sorts of self-re­

ference: first (usual) self-referential sentences (sentences re­

ferring to themselves) and, second, self-referential proofs 

(proofs referring to themselves)* This second kind of self-refe­

rence seems to be new and the classical diagonal!zation lemma of 

Godel-Feferman does not enable us to construct self-referential 

proofs* (The recursion theorem is the appropriate means for this*) 

The analysis results in a construction of a partial recursive 

function that formalizes attempts at constructing a proof of 

a contradiction; we show that all attempts fail* 

The reader is assumed to know the elements of arithmetista­

tion of mathematics and of recursion theory* Knowledge of the 

papers by Enderton [2] and Smorynski [ 5.] from the Handbook of 

Mathematical Logic is more than sufficient for the present dis­

cussion. 

5 --• The Paradox* In this part the Cherniavsky-Havel Truth-

reaction paradox will be briefly described* (For details see 

£UfL4]*) 

Consider an informal theory with two binary predicates B 

and T, two axioms Al, A2 and an "evidence rule" Bv* 

700 



T(xfy) (usually written xTy) describee the experimental situati­

on where some subject (either a human or a computer) accepts the 

text y as true after analyzing the text x. B(xfy) (written xEy) 

means that x includes evidence for y. 

Al# xEjy~-> xTy 

(If x includes evidence for y then the subject aoeepts y 

when knowing x.) 

A2. xB(xTy~->ny) —>-i(xTy) 

(The subject does not want to be in contradiction with rea­

lity, more preciselyi the subject will never acoept a sta­

tement if this very act of accepting would make the state­

ment false.) 

Bv If you, after being exposed to x, feel convinced of y then 

xBy« 

The particular ease important for us is the follow! ngt 

If x contains a proof of y then xEy. Havel does not specify 

the notion of proof involved here; he merely says "what is 

a proof for us (e.g. for the reader) should be an evidence 

for the subject, too." 

The truth-reaction paradox follows. 

1. Let d denote the text of this proof (lines 1. through 8.) 

2* s ss n (dTs) (self-referential definition of a 

sentence s) 

3. dTs —> -i • (direstly from 2.) 

4. dB(dTs - * -i s) (1 . -3 . 1« a proof of 3. - thus 4. 

follows by Bv) 

5. n (dTs) A2 applied to 4. 

by 2. and 5. 
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7* dEs (1.-6* is a proof of s -

7. follows ty Bv) 

8. dBs&i(dTs) (5# and 7. pit together) 

And 8* contradiote Al. 

In Havel a theory variables range over texts (they might 

he called text variables) .! formulas are particular texts and 

if x is a text and y is a formula then both xTy and x % are for­

mulas, thus particular texts* Note that proofs (from some axioms) 

are also particular texts* This suggests treating Havel's theory 

as a kind of prepositional calculus or, better, text calculus 

with usual formation rules for propositional formulas enriched 

as followss 

(1) Any finite sequence of symbols is a text 

(2) If x is a text and y is a formula then both xTy and xEy are 

formulas• 

(T and B may be understood as some modalities*) 

Consider a simplified particular case where T and E are i-

dentlfled and made independent of the first variable. Thus va­

riables are propositional variables and T becomes necessity n 

(Al) is trivialized. 

(A2) obtains the form D ( D A - » I A ) - > I Q A 

Ev says "if i la provable then infer DA", which may be under­

stood as neeessltatlont from A infer DA. 

One further assumes 

(AO) all propositional tautologies and 

the existence of a particular propositional foxmula be­

ing a fixed-point of the modality iQ s 

(*p) q s i a q . 
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Theorem 1. Axioms (A0)«»CA2)t(Fp) together with modus po-

nens and neoessitation form a contradictory modal theory. 

(The paradoxical proof above amounts directly to a proof 

of a contradiction.) 

Remark 1. This show.?, in particular, that (A2) in the pre­

sent form is not pro Table in the modal system 0 of C63. 

J 3# Arithre^tical interpretations. Our general approach is 

as follows: We let Tariables of Havel's theory range OTer fini­

te sequences of symbols of the language of Peano arithmetic PAt 

hereafter called PA-texts. The notion ©f proTability inrolTed in 

(Br) will be made precise as meaning PA-proTability (proTability 

in PA). For each PA-text s we haTe its code (formalization) ps~1 

which Is a particular term describing s in PA. 

A*1 iaterpretation of HaTel's theory will be any pair £(xty)t 

r(xty) of PA-formulas haTing (at most) two free Tariables * T in­

terprets T and £> interprets E. HaTel's axioms become axiom sche­

mes: Por any PA-texts dt st we have 

(Al*) t r d ^ V ) -> <t (rd\V) 

(A2X) e(rrf
 rt( rdVi 1)^ii" ,)-^it( rd 1

fV) 

(Note that for each text st is Is also a text* if a is a formu­

la then 10 is a formula.) 

Let <T be a theory containing PA. The interpretation is sound 

in f if (Al*) and (A2X) are proTable in (T (for each ohoice of 

dt s) and if the following holds (the rule Br)t 

If d is a PA-proof of a formula s then f h e(rd"l
t
rs1). 

We shall exhibit some interpretations sound in some theories 

and net sound (ill) in some others. In each case we shall show how 
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the cone true tion of the paradoxical would-be proof is formalin-

able and Isolate the exact place where the exact place where 

the formalization is not a proof of contradiction. 

To close this section, let us recall some facte about PA 

need in the eequel (see r43)s 

Pact 1 (Diagonal!nation lemma). Let ^ be a PA-formula with 

one free variable* Then there exists a sentence cp such that 

PA I- qp sr ?£ C<f*) . 

Faet 2 (about 5:,-sentences)* Every true elosed JF- PA-for­

mula 10 a theorem of PA* (A PA-formula is Z , if it has the form 

(3x)Y where all quantifiers in y are bounded, see [4]*) 

Faet 3* PA is consistent since it has a model (the standard 

model of natural numbers) . 

§ 4 * An analysis baaed on provability* In the first inter­

pretation we ignore the 0elf-reference to d and identify T and E 

aa one unary predicate* The predicate T (** B) must be Interpreted 

in accordance with the evidence rule* i.e. if there la a PA-proof 

of a then T(r a1) must be provable* Therefore we Interpret T as 

Pr(x) where Pr(x) ia the standard predicate of provability in PA* 

i.e. for each PA-sentence p we have 

PA H 9 iff PA H PrCg,*1). 

More generally, If T is an axiomatised extension of PA then 

Pr^(x) denotes the standard provability predicate for T ; thus 

Pr(x) I0 the same as PrpA(x). 

Thus this Interpretation ia sound in a theory T if we have 

the following t 
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(A2) <T h P r ( r P r ( V ) ~-+ ~< <f)~^ ^ P r ( V ) 

(Br) If there i s a proof of y in PA then T v~ Pr(r5?*1)# 

T i i e Paradox translates to the following sequence of PA-fonmtlae 

2 ' . <y == ^ PrCcjP) where 9 i s a particular sentence of PA such 

that PA h 9 s n P r O 1 ) . 

3 # . PrOgf1) —> -19 

4 # . P r ( r P r ( y ) ^ - » n9n) 

6'. 9 

7'. Pr(V) 
8 ' . TPr( r9"1)8.Pp( r9"1) 

Theorem 2. The interpretation of T and B by Pr is not sound 

w.r.t. PA. 

Proof. The axiom (Al) is proTable in PA due to identifica­

tion of T and S. (Br) is true in PA by Pact 2, since Pr(x) is a 

X ^-formula. 

Let us now suppose that (A2) is pro Table for eTery formula 

if • This means 

PA 1- Pr( rPr(y) — ^ l y 1 ) - ^ ! Pr(rYn) 

for eTery Y , especially for the sentence $> for which 

Then in PA all steps in the Paradox are provable and we have a 

proof of contradiction on PA which is not possible (Pact 3.). 

Thus the axiom (A2) is not proTable for eTery formula Y • 

Theorem 3. The interpretation of T and B by Pr I0 sound 

w.r.t. PA • c<*>UpA where
 co*-pA is the sentence formally expressing 

consistency of PA. 
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Proof* Note that i f <p i s a PA-sentence then 

PA + ConpA h i P r ( r ^ ) v n pr(r~ig>1 ) . 

We want to prove 

PA + ConPJLH P r C P ^ V ) - ^ -I 9 1 ) - * i P r ( r 9 1 ) . 

We have 

P A h W ^ V ) - ^ - i g ) 1 ) - ^ ( P r ( r P r ( r 9 1 ) 1 ) - > Pr( r ~ i9 1 ) ) 

PA H Pr( V ) - > Pr( rPr(rgP p) 

by the properties of Pr(x) . 

Thus we have 

PAt ConpAf Pr(
rPr(ry1) — * "»9"7 )t W V ) H Pr(r-19

1 ) 

which implies provability of (A2*). 

Corollary (Godel second incompleteness theorem)* PA^Con--,** 

Immediate from Theorem 1 and Theorem 2* 

Remark 2. Comparison with a proof of second Godel's in­

completeness theorem, e.g. in t 5J makes obvious that the present 

proof is by no means a new proof of this celebrated result; it 

merely show* that the analysed paradox - in the present inter­

pretation - involves the same reasoning as that used in the 

proof of the second Godel's Theorem* 

Pact 4, Consider the theory PA + A2 where A2 is the axiom 

schema as above. We have PA + A2 i- ConPA* 

Proof. Let cp be a sentence such that 

PA h 9 m n PrCy 1)* 

then PA t- Pr( ""PrC^1) ~ » ~i 9 1 ) by Pact 2. 

and thus 

PAfA2r- i P r ( V ) 

i.e. 
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PA,A2 r- (3x) ( . fml(x)&-iPr(x) ) 

whieh is a sentence equivalent to ConpA. 

Remark 3. We saw in the proof of Theorem 1 that the se­

quence (2#)-(8') is not a sequence of formulas provable in PA: 

we eould not use (A2). How, (A2) is provable in PA+ConpA (and 

PA+ConpA is consistent); filling the details makes (2#)-(6#) 

into a (PA+ConpA)-proof. But this does not entitle us to con­

clude ^rp^g?"1), but only that prpA+Con(
rg>1). Thus this is the 

place where the "proof of contradiction" collapses. (In fact 

we obtain a (PA+ConpA)-proof of ^pA+Con^
1 ^ 1 ^ P A ^ 1 ^ 

Remark 4. The reader can easily see that if we change our 

notion of soundness of (t ftv) by postulating 

(Bv') If d is a (PA+ConpA)-proof of a then (T H s (
rd1

t
rs1) then 

the interpretation of T and B by PrpA+Cox, (x) is not sound 

w.r.t. PA+ConpA* similarly for other theories f 2 PA, 

Similarly, the reader may verify that if Pr?A is taken for 

& (to Interpret Havel's B) and t(x) is any formula of the 

language of PA such that PA H (Vx)(PrpA(x) —> x (x)) then the 

corresponding instance of A2 is unprovable in PA. (If we had 

such a proof then the paradox would yield a proof of contradic­

tion in PA.) 

§ 5. An analysis based on the notion of proof. The inter­

pretation of Havel's B (and T) presented in the preceding secti­

on does not depend on the first argument of B (of T) and there­

fore the diagonal!zatlon over proofs is disregarded. Here we 

shall imitate the paradox more closely. 

First realize that it is trivially impossible for a text 
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to contain itself as a proper subtext; the reference of a proof 

to itself is only possible by means of an appropriate descrip­

tion of a proof and not by quoting the whole proof in a part of 

itself. 

We oould identify descriptions of finite sequence© with miliary 

Turing machines. If such machine d converges and produces an 

output idl • s then it is a successful description of s, if it 

diverges {{&\ is undefined) then d fails to deacribe a symbol. 

More generally, the deecription may have some finitely many 

stepsf say 9. Such a description may be best understood as a una­

ry Turing machine d for which we are intereated only in value© 

tdK0)f-idKDf...f-UK8). If all these values are defined then d 

successfully describes the word s » -CdKO)* ....*-idl(8) (where 

* is the sign of concatenation); if d fails to deacribe a word 

in 9 steps we may at least ask whether d has succeeded to des­

cribe a word in (say) three steps, i.e. whether i&H0)9 -fdKD* 

-tdK2) all converge and if so, we can investigate the word 

~[dK0)*{dKl)*-UK2). 

We ahall underatand the paradoxical "proof" as a descripti-

on of a binary Turing machine h that processes (mentions) each 

stepwise description d of a proof (successful or failing) and 

tries to de©cribe a new proof (in 9 otepa) 

ShKd.O.'thKda),... *hKd f8). 

By Recursion Theorem, we then investigate an arbitrary d ouch 

that 

^ h K d f i ) ^ * U K i ) 

for eaoh i (» 0,1,.,. 8). This will mean that the proof descri­

bed by £d}(0)f 4dMl) f... mention© itself. 

Havel's predicate E (identified with T throughout) is most 
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naturally interpreted by postulating that e ( x , y ) says x i s 

a sequence and contains a proof of y f i . e . y i s one of formu­

las (not necessarily the least one) occurring In x: 

Prvp*(x fy)= x i s a sequence & ( 3 w ) (w i s a subsequence of x& 

& w i s a PA-proof of y ) . 

Convention. d"n denotes 4 d ] ( 0 ) * .•.*-£ d5(n- l ) ; this va­

lue ex i s t s i f and only i f a l l values {dKO), .# . £d$(*--l) e x i s t . 

PrVp*(xnyf z) i s assumed to mean: for some yn^y f xMy-j e x i s t s , 

say f xwy.| » wf and PrVpA(wf.e). Hote that for each particular 

n f PrVp.(xwnf%) i s a ^^-formula. 

Cons true t lon . We define a Turing machine h by describing 

i t s behavior for arbitrary f i r s t argument d and for second ar­

gument i « 0 f l f . . . 8 . i h K d f i ) for i £ 9 ie irrelevant (say i s 

0 ) . The def init ion paral le ls steps in the Truth-reaction para­

dox, the f i r s t step being postponed: i t w i l l consist in an ap­

pl icat ion of the Recursion Theorem. 

i • 0: Given df the machine h constructs a se l f - re ferent ia l 

sentence s such that 

PAH 0 s i ? r f p A ( r d l w 9 , r B n ) 

and outputs a PA-proof p0 of the l a s t equivalence. 

i -» 1: { h } ( d f l ) prolongs p to a PA-proof p, of 

PrVpA(rd~ ,"9 f
rsn)~> i s ; 

this means that i f we denote pQ)HJih^ ( d f l ) by p1 § then 

V% i s a PA-proof of PrVpA(rd"',,9»!"s"1) —> n s . The l a s t 

implication w i l l be denoted ANT* i t w i l l be used in the 

antecedent of an instance of A2. 

709 



i m 2 (First f i l l i n g ) ! h searches for a PA-proof of 

PrvpA(rdn«9 f
rAHTn); 

i f i t succeeds then the found proof i s i h ^ ( d f 2 ) ; and 

we put p 2 m p x ^ ^ h H d f 2 ) . I f i t f a i l s then ih^(d f 2) i s 

undefined (as well as { h ! ( d f i ) for a l l i > 2 ) . (Similar­

ly for other f i ly ings below.) 

Convention % The word * proof" (underlined) w i l l have dou­

ble meaning in the discussion below; at the moment, think of 

PA-proofs. 

i m 3 (Second f i l l i n g ) t h searches for a proof of 

PrvpA(rd' tw9 f
 rAH*1) —» ~i PrvpA(rdn"9 f

 rs^) 

which i s an instance of A2| i f successful the found proof 

i s 4h l (d f 3) and we put p~ » p2*-£hMd f3). 

i • 4t i h K d f 4 ) prolongs P3 to a proof of -iPrVpA(rd ln9 f
rs"1)# 

we put p4 - p^M *h3(d t 4 ) . 

i » 5t ^LhKdf5) prolongs pi to a proof of s (using the equiva­

lence in i m 0)i we put p5 * p * * 4 h H d , 5 ) . 

i m 6 (Third f i l l i n g ) * h searches for a proof of 

PrvM(rd~ ,"9 f
rs~1)* 

i f successful then IhKd,6 ) i s the found proof and we 

P*** Pg * P c * 4h^(d f 6) . 

i - T? ih^(d f 7) prolongs p^ to a proof of i i | put 

P7 * P $ * *h"Kd,7) 

i m 8t 4h1.(dt8) prolongs p7 to a proof of s &n s . 

End of def ini t ion of h. 

Convention. In the sequel, d w i l l denote an arbitrary Tu­

ring machine sat i s fy ing the equation 
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•ChKdfi) = -UKi ) 

for each i * 0 , 1 , . . . 8 . (Existence i s given by Recursion Theo­

rem.) 

Paot 5. For every choice d according to our convention, 

d"3 ex i s t s and i s a PA-proof. (There i s a f i r s t f i l l i n g . ) 

Proof. We know that p-̂  i s a PA-proof of AWT and that 

p1 « -£h3(d f0)*{h^(d,l) .! since *d$ ( i ) .= i h l ( d f i ) for i - 0 f . . . 

. . . 8 f d"2 ex i s t s and equals p , . Thus the formula 

PrVpA(rd"Iw9f
 rANTn) i s true and therefore PA-provable (being a 

--2-,-formula) • 

Pact 6. If "proof1* in the construction means MPA-proof" 

then for each d,-{d}(3) i s undefined; the instance of A2 in que­

st ion i s not provable in PA. (Thus dw4 does not ex i s t $ there i s 

no second f i l l i n g . ) 

Proof. This i s because i f there were a second f i l l i n g then 

there would also ex i s t a third f i l l i n g (see i =- 6 in the const­

ruct ion) , since p, would be a PA-proof of s and p. - d"5; thus 
I > r TPA^r d l"^ , r , B^ would be provable. Thus in that case d"9 would 

e x i s t and would be a PA-proof of a contradiction. 

Theorem 4 . The interpretation of T and E by PrVpA(x,y) i s 

not sound in PA. (Immediate from Paot 6 . ) 

Pact 7. Axiom A2 i s provable in PA+ConpA. 

Proof. In (PA-M3onpA) assume PrvpA(rp^ f
 rPrvpA(rp%'"s1)-—> 

—*-i s"1) and PrvpA(rp" ,
f
rs"1). Then 

PrpA( rPrVpA(rp-i fr f l i ) i ) t P r p ^ P r V p ^ r p ^ r g i ) ^ ^ l f-i ) f 

hence PrpA(r~. s - 1 ) . But PrVpA(«~p\r*1) implies -^p^1"8"1)* s o w e 

have P r ( r s ^ i s 1 ) f a contradiction. 
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Theorem 5. The interpretation of T and S by PrTpA(xfy) 

i s sound w . r . t . PA+Coiipj^ (Immediate.) 

Remark. Similarly as in 8 3 , we can try to understand h 

as a function trying to construct a proof of a contradiction 

in PA+Conp.. For this purpose, we sha l l understand the word 
wproof11 (underlined) in the construction as w(PA+Con.gA)-proofw. 

Pact 6. If the construction of h is modified as Just said 

then dM6 exists and is a (PA+ConpA)-proof, but for each d, 

{dl(6) diverges thus dw7 does not exist. (There is a seoond fil­

ling but there is no third filling.) 

Proof* This follows from Pact 7$ A (PA+ConpA)-proof of 

A2 i s a second f i l l i n g . Therefore there can be no third f i l l i n g 

since otherwise the construction would produce a proof of con­

tradiction in (PA+Conp*). (Let us mention that in the present 

s i tuat ion pg i s a (PA+ConpA)-proof and therefore also -CdHn), 

but i t i s not a PA-proof« In the second f i l l i n g , the axiom 
ConPA * s u s e ^ * n a substantial way.) 

Thus the Truth-Reaction Paradox does not give us any proof 

of inconsistency in PA+ConpA because, as we have just seen, the­

re i s no third f i l l i n g . 
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