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A LIOUVILLE THEOREM FOR NONLINEAR ELLIPTIC SYSTEMS
WITH ISOTROPIC NONLINEARITIES
P. L. LIONS, J. NECAS and |. NETUKA

Abstract: We show thet if u =(u1,...,um) is @ solution with

bounded gredient in IR® of en elliptic system of the form:
du
- 2 (8(IVu?) 53T )=0, 1 €x £ n,
1 3J

then each ue is 8n effine function on R",
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I Introduction:

We consider here a nonlinear second-order elliptic system of
the following form:

9u
1 - "?’i} (lﬁ(lvulz) -5—;":-; ) = 0 in IR®, u=(uyyeeeyup),

1 € &€ m.,

Throughout e11 the psper we will esssume that aij € Cl( IR) (for
1 £i,j ¢ n) end thaet (1) is very strongly elliptic in the sense

thet for every Yy send § #0

2, gt g%t . 2y .8 14
() 050 1y1%) €565 + 2 e Oyl it g5 >0

We orove below thet if u hes 8 bounded gradient on lR“, then
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esch component u, of u is affine on R",

This result is clearly a Liouville type theorem. Let us ex-
plain now how this result is releted to verious facts from nomli-
near second-order elliptic systems theory. To this end,let us con-

sider s genersl second order elliptic system:
(3) - 5%—- (e;(x,u, Vu)) + a%(x,u,Vu) = £%x) in O
i

where 41 ¢« 4 m, u= (u.l,...,n-) end 0. is e bounded domein in
IR, The very strong ellipticity of the system (3) is expressed
by the following condition:

3." « P
(4) -——i—ayf(x,j,y) fif370  fro.

Of course, when (3) reduces to (1), (4) is nothing else than (2).
Assuming thet u is a Lipschitz solution of (3), one may esk
the following netursl (snd fundementel) question: is u of clasa
ci or evem CliM* (for some &6 (0,1)) ?

As shown by M.Giequinte end J,Nelas [2] , this regulerity
question turms out to be, in some sense, equivelent to the fol-
lowing Liouville type condition: (3) is seid to setisfy the Liou-
wille condition (in short L(IR")) provided the following implice-
tion holde: for el11 x°¢ Q, § €WRE, it v = ( Visese,Vy) is @ so-
lution with bounded gredient of

(39 - -é",—; (8%, €,Yv) = 0 in &7,

them each v is effine on [RP. More precisely, in [2] it is pro-
ved thet if the system (3) (where we assume (4) with a‘i",
o%e cl( A x B® x R™) sstisties L(R®) and P > n, then for every

¥ > O end every compsct set Kc ) there is c(y ,K)< oo
that

such
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(5) Wug, U € c(y ,X), 1 6 %,

clryrx)

with 4 =1 - (n/p), whenever % LP(N) end u ie e Lipschitz
solution of (3) suech thet
tul) + Nz €y
LA [P(a)]l® '
Conversely, in some sense, L( IR") is e consequence of regulerity
results of the form (5) - see J.Nefss [6],[7] or M.Giaquinte [1].
Therefore the Liouville result we prove in this peper imme-

distely yields the 01 'K regulerity for specisl systems of form:
?
(6) - 3:-’,—_ (eij(x,u,qulz) 5—:-%) + 8% (x,u, Vu) = £%x) in N
i J

(for 1 €« 4 m), At this point, we wemt to poink out thst this re-
gulerity result (e consequence of our result and an equivelent
when s, depend on | Vul? only) wes estsblished by P.A.Ivert [4]
in e generslization of deep results due to K.Uhlenbeck [8] .
Thus, in some sense, the result we present here is not new end
could be derived from Uhlenbeck - Ivert results. On the other
hend, our method of proof is quite different from those of [47,
[8] end, we believe, much simpler. Iet us elso mentiom thet it is
straightforward to edept our method of proof to show directly the
c’"')‘ regularity result (looking, roughly spesking, at little
bells instead of lerge bslls).

Let us conclude this iniroduction by a few words on our
method of proof. In section II below, we present 8 genersl result
on nonlinear elliptic systems which implies in pertieculer thet,
if we denote by w=Vu, we have: there is ¢ > O such that if
$..®) < €, then for every ¢ e(O,R)

t3) ) tc, du®
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where C, depends only on |l ewll end where for a vector

L°YBR)
valued function g we denote:

$ 00 = Ly f lgx) - @12 ax,
B

¢
(g)g

[}

4/18gD) [ glx)ax.

B
g

By en easy use of Poinceré inequeality, we see thst in order to
conclude (using(7)) we just need to show thet w=Vu has the so-

-celled Saint-Venent property:

(8) 1im  R™P*2 f (Ve (x) ] ax = O

R~»00
By
The mein ides used to prove (7) goes bsck to e fundementel lemma

of E.Giusti - see e.g. [2] .
Next, in section IXI, we stete end prove a Liouville type

theorem, This is done by remerking - following [4],[8] - thet

qul2 = w satisfies:

) ;
(9) - 5x; “Ayj %—;’3—) + «|puj2¢0 in ®"

for some « > 0, and for some uniformly elliptic coefficients Aij'
Using this inequelity end e Hernack type inequality proved in
D.Gilberg snd N.S.Trudinger [3] (for exemple), we show that (8)

holds end thus w is constent.
The suthors wish to thenk P,A.Ivert for useful discussions

end' for a cereful reading of our menuscript.

II A general result on quesilineer elliptic systems:

In this section we consider e solution w= (Wysees,Wy) of
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awe
‘ s
(10) - -e—ax-; [Ai[;(w) P ]= 0 in R%, a=1,...,N,

where A;/; are continuous on IR® end where the ellipticity com-
ditiom

(11) sl f1E5>0 rorfro

holds.

Theorem II. 1: Let R > 0, let « be & bounded solutiom of (10)
in (El(BR))K end let us sesume that (11) holds. We denocte

Ma=lal . Then there exist € >0, C > O such thst the

L YBg)
following statement holds:
if éw (R) & F—g ’
¢
then ., ) £ €, ut®

whenever ¢€ (O,R). In addition €50 C, depend only on & end on

o
the ellipticity constents in (11).
Before giving the proaf of Theorem II.1, let us mentiom the

Corollary IX.1: Let «w be & bounded solutiom of (10) in
(B}oc( BN setisfying the Seint-Venant property

lin RP*2 f Vw2 ax = o,

R-> o0

Bp

and let us essume that (11) holds. Them w is e constant vector.

Proof: Observe that we have by Poinceré inequality:

(12) B™ S'lw(x) ~(a)BR)2 ax ¢ cln‘"*“? flvw(x)l2 ax.

Br By

(Here and below C11Cppese denote verious positive contants inde-

pendent of R,w,u.) Thus we see thet (8) implies: lim ém(ﬂ) = 0.
R =00

Therefore by Theorem II.1, éw(?) =0 for ell ¢> O eand the
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proof is complete.

Proof of Theorem II.I: First of all, in view of (11), there exists

y >0 such that for every i end l§l €M we have
“p af 172 , 1 B « A 2
5060 506172 & 5, ags(e) &5 652 v 1E1S
Let us also recall thet it is kmown (see e.g.f_2]) that there
exists ¢, ( = ¢,(M,¥)) such thet we heve:
(13) P (T) £¢,T2 dut), 0<% &1,

if w is & solutiom of the system:
_ 9 op Ay
_5—5'_1 (Aij(g)-g—;; ) =0 in By

where 1§1¢ u
Next, let 7 & (0,1), We ere first going to prove that there
exist €, = go((u.,‘t,y) > 0 sueh thet

~ 2
(14) $, () é42e,2% 9 )
where w solves (10) end satisfies: Ifcull ~E) fp, G & ef, .
Let us argue by contredictiom and let us thus sssume that the-

re exists & sequence (wn)né‘l of solutioms of (10) satisfying:

n 172
(15) Haw "L"'(al) ¢, {@wnm} =¢,—0,
2 2
(T)>2e,T e 5.
é wh 2 n
To simplify notetions, we will use indifferently the notetions
@wn('l) or §(w",7T). We then set: ¢" ~E—3;—[a.;n - (wM1].
Obviously we have:
(16) [ lem@l%x = 1; § (o2, 1) > 26,73

By
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asn
(an) - 7, U35

)=o.

Without loss of generslity we may essume thst:
6" 56 weekly in (LZ(B.“_))', éna'“——; o in(Lz(Bl))n
and a.e,,

for some 6e¢ (L2(Bl))‘. In edditiom,;in wiew of (16): §€ (1),

Furthermore, recelling thet we have:
- n n,1 n || ¢
W T =E. 6 +Hw) Il w
' L°(8,) £
we see thet |(w™?| tu end " - (wMl 50 a.e. Since we
may essume without loss of generality that (wn)1—9§ (1g1 £ ),
we finelly deduce: a.)n———>§ e 8.€s o

Next, we obtein from (16) and (17):

(18) [196™)12 ay ¢ ex)  for xe(o,1),

By

thus we may suppose thet §*_— 56 weskly in (Hi(Bk))n (for sll
k < 1), Thus, passing to the limit in (17), we get:

_ 3 «p o6p .
-s—x-{(Aij(g)T;aj)-O in By.
In sddition,since 6, —> 6 in (LZ(Bk))“ (for 11 k < 1), we
~ ~2 2
deduce from (16): 6( 6,7) 22c,T° 22,7 6(0‘,1). This
contredicts (13) end' the contradiction shows our claim.

72 ¢ 1, Given

Let us choose now 7 € (0,1) satisfying: 2c, 7T
€ 6(0,1), let kX * 0 be the integer such thet: Tt ¢< Tk,

. . 2
Now, if w solves (10) end satisfies: [lcv L"(Bl) ‘q,, &w(l)— €q s
we have in view of (14):
RS f\w-(w)‘lzdxé(g/”k)“ fl ~(wf|2ax ¢
Be B¢
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k k
¢ (7 fl«:-(w)T 2 ax £ () f Jw -(w) |2 ax 4
Bg B’L'k

¢ [1w- (] ?ax
Bl
thet is,we proved: @w(gé ) &8 éw(‘l).
The proof of Theorem II.i is eesily completed by considering
the functiom & (x) =w (x/R).

Remerk I1.1: We now show how the preceding results sre related
to the system (1): indeed, 1af ue (Fl1 (1IR"))™ is & solutiom of
(1) then, for 1 £k € n, 3: satisfies:

o
-T—[Aiﬂ(vu)g—— 5—;-5 )]=0 in B?, 1 €« £,

ou
where A33(Vuw) = oy (1Vul?) dyp+ 2 a°(1Vul?) ~‘f-°‘ 3;1;-
Thus w= Vu setisfies @ system of the form (10) end (11) ise

a consequence of (2).

III The mein result:

Let u = (ujjyeeo,u,) be & solutiom of (1):
d
- 153;:-1 (aid(\Vulz)'J;‘;) =0 in R?, 1 & <m,

Theorem IIX.l: We essume the ellipticity comdition (2) end

V u € (L®(IR"))™, Then esch component u, of u is effine on
=B,

Procf: Stenderd erguments yield uewloz( 1B e, [7] or [1] .

In view of the results of the preceding sectiom and of Remerk II.1,
it is enough to show:

(19) 1lim R™*2 J | 02 uj? ax = o,
R=>co Br
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In order to prove (19), we first observe thet an easy com-

putation yields: 2 2
) 3 2 . 3 ._a.—ui- 2
- 3% [Aij(Vu) -;—x-j(qu\ )]+ 83 5:15 X dxgox,

du, dup %, Qzub
+2°ik§;k ax 9x;9x, Gx-ax =9

1]
here A, (Vu) = 19 ul?) v l) %3“-
where ia'( uw = 3 j( u +aié u axk xj

(20)

In view of (2), we see that (for more deteils,see [4])

(21) 3y>0, Vie®", A;(Vux) §: % 2vigl?,
(A5 Vut) A 5(Vu) JV2 % eecinm®

end (20) implies:

3 3 2 240 in R
(22) - gy (Vo) g, AVl « | %] '
2
for some o > O, We denote =0 1Pule ——

We are now going to prove:

(23) M2 f |p2ul2 ax £ N f(l-qula)dx.

Br/2 Bar
To this end we introduce 7e¢ Elo (Bog),the solution of:
3 3 _1.~

Stenderd results yield: y # 0 in By end

infess 1 2 e5 > O.

(25) v il
! L™(8 B2

£ ¢
ZR)
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Then multiplying (22) by 1('2 end using (24), (25), we deduce:

2
e [ [ Pulx)]? ax ¢ f Aij%%i—- 3‘8}; 4=V u[?) ax ¢
Bys2 Bop
¢ 1 2 dy 9y 2
€2 —QQ(I-qul ) dx - 2 A 3—} ;—;—;(l—Wul)dx
By X B 17
2R 2R

end this yields:

f lnau(x)lztx ‘-i—g— f M - 17 ul?ax
B
Brs2 2R

end (23) is proved,
To conclude, we see thet (19) follows from (23), epplying
the following lemma to w = 1Vu12 , o(.ij(x) = Aij( Vu(x)).

Lemme ITT.1: Let weHL (1R™) N L™ (R®) satisfy:

loc
- ;’; (g 4(x) —35—;— ) £0 in 1R"
1 J

where o, € L*°( R®) satisfy:

{“ia(x) dij(x)}i/z é%“ » “ij(x) Ei gj 2 v{§‘2 VE € mn,

a.e.in IR®
for some ¥ >0, If M = sup ess w, then we have:
R®
(26) lim (i/lakl) j w(x)dx = M,
R—> o BR

Proof: This lemma is proved by the use of s week Harnack inequeli-
ty (cf.[3], for exemple) which implies:

(27) R? f z(x) dx € g inf ess z
Bor Br
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with z = M -~ w, Now if we let R—>oo, we obtain (26) since

inf ess z —» inf ess z = 0; and 2z 2 0 s.e.in R"

By ®"
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