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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

BASIC EQUIVALENCES IN THE ALTERNATIVE SET THEORY
K. CUDA. B. KUSSOVA

Abstract: In the paper we study a special case of equi-
valences of indiscernibility, so-called basic equivalences.
The equivalences, whose definition has quite a set-logical
character, play an important role in non-standard descripti-
ons of topology and other areas of the alternative set theo=-
rye. We proved here among others that there is not possible
to include a proper set-theoretically definable class into a
monad and that each set-theoretically definable function which
has a fixpoint with respect to the basic equivalence in a mo-
nad is necessarily an identity on this monad.

Key words: Alternative set theory, basic equivalence,
monad, set-theoretically definable class.

Classification: Primary O3ET0
Secondary 54J05

This work is devoted to the studying of some properties
of equivalence {i-} . The equivalence £ is defined in[V),
che V, § 1. Already from the results presented in the quoted
book it follows that 2= is of consequence in the alternative
set theory. In the paper [V 1), the definition of the equiva-
lence % which is a generalization of £ , is given, and se-
veral essential theorems are proved there. Other works in the
alternative gset theory, especially L& - vl], confirm the im-
portance of these equivalences and, above all, the signifi-

cance of {%%§ ; we shall call 1t basic equivalence,

- 629 -



Now we remind (from [ V) and [V 1)) several crucial defi-
nitions and assertions which we shall need later on.

We put x r;=y iff the formula ¢(x)= ¢(y) holds for any
set-formule ¢ (z) of the language FLy.

Even now we can see that the non-standard description of
topology is much closer to set-logical considerations them the
standard one.

If X is a finite or a countable class, then % is an e-
quivalence of indiscernibility (cf. [ V], ch. III) which is to-
tally disconnected. The clopen figures in =°-X~ are just the
classes which belong to Sdy-

Moreover, it was proved in [V 1] that for each equivalen-
ce of indiscernibility == there is an equivalence {,:—s} which
is finer. This fact actually led to the name - basic equive~
lence ~ for {{j .

Monads in {%i , 1. e, classes of decomposition of V accor-
ding to {—:——} , correspond (by a one-one correspondence) with
ultrafilters on the ring of classes Sd{c} (recall that Sd fei
denotes the system of all classes of the form {x; ®(x){ where
@ 1s a set-formula of the language FL :; cf. [s - Ve 1l).

The correspondence is described as follows: for we V /{%i and
c

F veing an ultrafilter on Sd3» we have X e F=X2u for
each Xe¢ Sd{ e’

We shall define an ordering {’E‘; on monads (note that it
is similar to Rudin-Keesler s ordering on ultrafilters) and
investigate its properties.

Perhaps, the most interesting result of this paper is the

theorem, analogous to the classical theorem of the set theory,
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which asserts that two monads have the same strength (in order-
ing by iéi ), iff there exists a one-one mapping between them.
Note that through the whole paper we do not use the axiom
of extensional coding (the axiom of choice) and the axiom of
cardinalities, When we speak about ordering on V, we bear in
mind the natural oxdering on the class (see [V], ch. II, § 1).

The euthors thank P. Vopénka for discussions concerning
the problems studied.

§ 1. At first we prove that the following statement holds
for each function Fe& Sd{c,‘: if P has a fixpoint with respect to
{%i , then F is an identity. We also show that the condition
cannot be generalized in the sense that if P,GeSd{ o} and
F(x){%} G(x), then P(x) = G(x) is valid; see Example 1.

Theorem 1. Let FeSd{d, F be a function. Then
Vx)[P(x) 5y x = QX e S, J(FIX = AT X & @y (x)€ X))

Proof. Let P(x)i-gs; x for FeSd; ;. Let us denote X =
= §t;F(t) = t§. Because X €54, and hence X is & clopen figu-
re, it suffices to prove that xeX since this implies

@io (TEX.

Suppose x¢X and put ¥ = dom(F) - X . Obviously Ye Sd ;-
Moreover, xc Y and hence y{c;(z)SY.

Let us construct the graph G of F; its chromatic number
being leas than or equal to 3. Therefore, the field of G is
the union YiuYz'qu' where Y, (i = 1,2,3) are mutuslly disjoint
(Y; conteins just the elements of G which are coloured with
the same colour). Hence (F"Y[)n Y, = §. Pirstly, we prove that
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we can choose Yj: in such a way that Y{e Sdfe}+ We simply colour
the graph G.

Let {Kzilcﬂ be the system of components of G, Firstly, let
Kl terminated by a cycle. Then we colour the smallest element
of the cycle by the colour 1 and going back around it the verti-
ces will be alternately coloured by colours 1 and 2, eventually
3 (when the cycle has an odd number of vertices). If Kp ends
by a vertex which does not belong to dom(F), we colour it by
the colour 1 and when going backward we alternate colours 1 and
2, If Kg is confinal with N (Kl is now a proper class) we find
its least element and colour it by the colour 1. Then, starting
from the point to both the opposite sides, we alternate colours
1 and 2, Thus, Yie 54, 01 (1 =1,2,3),

Put ¥, = Yin dom(F) for i = 1,2,3, Obviously Y;e Sd ;. Sin-
ce xeY, there exists j €11,2,3} such that xeYd;then “iei(X) €
c Yj. Moreover, for each i there is F'Y;NnY; = # and therefore
also P" C‘-\c}(x) O ey (X) = @; this is in contradiction to
F(x) &y *.

Remark, It is possible to reformulate Theorem 1 into the
following equivalent version:

(¥x,c) Der{x,c’xr\c"{c}(x) = ixi,
since the formula ye D“{x,c} is equivalent to the formula y =
= P(x) for a suitably chosen function Fe Sd ;.

Example 1, There are functions F,G < Sd such that
Bx)(F(x) = G(x) & F(x)*6(x)).

We shall define functions F, G, as follows: for each {t,u”
we put P({t,u?) = t and G(<{t,u») = u, Let v, w be such that viw
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and v < w, Then it suffices to put x = {v,w).

Now we shall take an interest in a question how monads
are mapped by set-theoretically definable relatioms and how

functions of Sd{ci behave on monads in{%s-

Theorem 2. (¥x,y,c) dom((u.i,c}«y,x))) = (ﬁf{c;(x)&
% rng( @y oy (€¥yxN) = @ go3(¥)e

Proof. We prove only the first assertion; the second one
can be proved analogously. Firstly, note that if XeSdic& and
{y,x7€ X, then x€dom(X) and dom(X) € Sdg ;. Let {X_ sn PN} ve
a descending sequence of classes from Sd{c} such that (“'{c}(x):
= H{Xn;nemi and let SYn;neFNZ be such a descending sequence
of classes from Sdgoy for which @ ;((y,x?) = N4Y jn€PN{ and
dom(Yn)Exn. Then according to [V1, ch. II, § 5, we have
dom( @y 4 (Cyyx?)) = dom(N4¥, 0 € PN = N{dom ¥, ;neFN} =

= C"&,o'}(x)'

Theorem 3. Let Rch{cl, R be a relation., Then for each
X, the class R";.3(X) is a closed figure in {%i'

Proof, The fact that R"y.*c}(x) is a figure follows im-
mediately from the previous theorem when applying it to
“yc3Kyyx?) for {yyx>€R, It remains to prove that R" ye3(x)
is a sr-class (cfe § 2 ch. III V1), Since R" @w  .(x) =
= dom((RN(V > (u.{c}(x)))'l) and since the classes R, V,
gy (x) are or-classes, the class R" (u.{c}(x) is also a Jra
class (gee § 5 ch. II [V]),

From Theorem 3 it follows immediately:

Theorem 4. Let R€Sd, ,, R be a relation, Let (y,x>€R
and i‘{%‘ x. Then there is a set ¥ such that 5"{%; ¥ and
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{¥,X?€R.
The next theorem asserts that functions of Sd{c} are both

continuous and open with respect to {%} .

Theorem 5, Let Fe Sd{c}, F be a function, Let w be a
monad in {%} + Then F"(u, is either empty or Frw is & monad

L
in =

Proof. The assertion follows directly from Theorem 4,

Remark. Realize that Theorem 3 results in: The inverse
image of a monad in {%3 is a closed figure.

©

Lemma 1. (Vx,¥,%,c) X Y ife {t,x > {%} {tyyYe

Proof. At first, let x{c%ﬁ y. We know that x{cé:-ﬁ y ite
for each formula ¢ the condition ¢(x,c,t) = ¢ (y,c,t) holds.
We have to prove that for each formula % , it is provable:
y({tyxy,c) = ¥(<t,y>,¢c)e Thus, let 4 be given, then we put
¢ (x,c,t) = (32)(2 = {t,x> & v(z,c)). Conversely, assume that
{t,x? 42 <t,y> is valid. Now the formula ¢ is given and we
find a corresponding formula v : We take y(z,c) = (3%,x)(z =
= {t,x> & @ (x,c,t)).

Theorem 6., Let Pe Sd{c}, F be a function. Let x’l{%} x,

and F(xl) = F(xz) = y. Then x, ‘%7%3 X5e

Proof. Define a function G as follows: G(t) = <F(t),%t7>.
Then Ge Sdg,3 and thus G is continuous in ,ﬁ-"—} « Therefore
(y,xl) = G(xy) k%'} G(xp) = <y,x,7. According %o Lemme 1 we ha-
ve x; ‘éﬂ X5

Remark. It follows immediately from Theorem 6 that for
Pe Sd{c}' F a function, the inverse image of each element y
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o -_?—: .
restricted to a monad in T3 is a monad in 16,43
Our next remarke are concerned with the question whether

it is possible to converse Theorem 5; i.e, if for each ¢, Pe

€ de, P a function, the assertion

(Vi op) (I @iy (F" Wygq = @y = PeSdgg)
is valid. We shall show that the answer is negative, Let us
reformulate the problem in this way: Let FeSd q;0 P a functi-
on, and let, for each (w . i, (22{0; such that P" w1 =
= @y exist. What kind of definability holds then between o
eand 4 ¢

At first, we introduce a new notion.

Definition. The sets c, d are called incomparable iff
c+ Def.{d} and d¢ Def{cf .

The following theorem 7 gives the example of such & func-
tion which belongs to Sd{di' Sd{c§ (c, 4 are incomparable) and
transforms monads in {=z=! onto monads in {%} .

Por proving the theorem we need two lemmas. Remember now
that in [S - Ve 1], there is proved that there exists at least
one class of indiscernibles which is a proper J-class and which
is an intersection of countably many classes from Sdo. We shall

choose one of them and denote it Ind.

Lemma 2, Ind is a monad in £

Proof. Ind is a figure in = (see [V]), For Ind being a
monad in = it is sufficient to prove that x =y for each x,y€
€ Ind; in other words, we must prove that for an arbitrary
formula ¢e FL,, @(x)= ¢ (y) holds. According to the de-
finition of indiscernibles we know that for each ordered n-tup-
le 1t 18 true @ (X)seeeyXy) = @ (J1s000,7,) and hence also
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¢(x) = @ (y).

Lemma 3. (V¢ >Def) (le,dzelnd) [(dl,d2>Def_{c§ &
°

&d) T a&a *a,) = céDef{<d1.d2>ZJ.

Proof. Let ce Der\‘<dl,d2ﬂ « Then there is de Ind such

that d< c<d1< d2 (note that ¢ > Def and monads tend confinal.

1y to Def). Since ce Def 5 we have F(dl'dz) = ¢ for

1<4d,,d,
a suitable function Fe Sdo. Construct (“{cl(dl)‘ the monad is
a class of indiscernibles, for (u{c}(dl)EInd holds. But the

there is d, such that d3<d1, d3<d and d37 Def-{c}' Let

3 2

qr(t,tl,tz) = F(tl,t2)>t. Obviously y is true for d'dl’dz’
These elements are, however, indiscernibles and hence it is
also true qr(dB,dl,dz). Thus c>d3, which is in contradiction

to d37 Def{ ey’

Theorem 7. There is a set-formula ¢ € FL such that for
each c¢c> Def there exists d incomparable with ¢ and ¢ defines

a function Fe Sd{d} - Sd{c} for which the condition

(V(u{c})(_:l@l{c}) P ey = Myed
holds.
Proof. Let c>Def end let d,,dy€ Ind be sets satisfying
the assumptions of Lemma 3. It is easy to verify that <d1,d27
and ¢ are incomparable: c*:Dedel'dz)} follows directly from

Lemma 3 and for d,,d, > Def; , we have <d1,d2>¢Def{c}. Deno-
te d = <d1,d2). Furthermore, define a function F by: F(d;) =

= dy, F(d2) = d; and F(t) = t for each t different from d;,dj.
Then obviously Fe Sd;43 and F transforms each monad in {%‘i on-

KN
to a monad in oy
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§ 2. In the beginning of this paregraph we shall investi-
gate the "strength" of monads from the standpoint of definabi-
1lity. Further let s Mo denote monads in _(:;i-} .

Definition. We say that «, is stronger than M4 (nota-
tion: 6"1{53 (“-2) iff there is a function Fesd,,; such that
FY gy = @qe If &y {:z’c—; o and &, {‘é} (“q et the seme ti-
me, we say that (“—1 and (“-2 have the same strength (notation

@ (T o). Ve write 133 Mo if simultaneously
(14,1{%23 o and (f‘»lfgﬁ (“ o and we sey that ¢, 18 strictly
stronger than (14-1.

Remark. Notice that from the results of § 1 it follows:

2 " = "
(e} Gp= BPESA NP ), € )= (FFeSdgq) ' wyn
N @, *4.

Lemma 4. (v(u']_y (u‘z) [(‘41{%} (u‘a
H: @y <> ((LZJ .

GHE Sd{ O})

Proof. Let 4y (h (45 Then there are functions F,G e
€ Sd{cl; such that F(x) € (4, for each x € W, end y) e “p
for each y € . Construct a composite of F end G. Obviously

Fo Ge 5S4 dom(Fo G) 2 @, end (FoG)" @) = (4. Thus

1}’
y{%,& (FoG)(y) for each ¥ e My In accordance with Theorem 1
there is a class X€ Sd¢,; such that Fo G is the identity func-
tion on X and (u{cg(y)EX. Since (“{c}(y) S Wys We have Fo G =
= Ida b ¢+, and therefore GPM(F"X) = (FD X)J.Hence it suffices

to put H = G} (F"X), The converse implication is obvious.

Lemma 5. Let 4 (% &, end let F,GeSd¢sys be such
functions for which F: &, <> M, and G: uy ¢« > (%, hold,

- 637 -



Then * r(ftluG |“¢L1.
Proof. The assertion is an evident corollary of Theorem 1.

Remerk. Note that the assumption &, T} (*5 in the pre-
vious lemma is essential. Namely, it follows from Example 1
that:

Gx)(3 @y, @)AFCe8a ;) @) £ U &Fr @y —> @y &
§G1 @, —> 4% M(x)+6(x).

Lemma 6. Let W, (e Then

(VEXF is & figure in gy ) Pn( @)% @,)$8 =>F:1 . <> u,,

Proof. Let xePn(uyx (%3)s then (x,F(x)> ¢ ¢y “oe
Denote » = (tl-{c}((x,l'(x))). Since » 18 a monad, there is a des-
cending sequence of classes X € Sd . ; such that » = N{Xn e
€ FN}.

We prove that there is ke FN such that Xk is a function,
Agsume that for each ne FN there is x ¢ dom(X;) such that
44 {x,} has at least two elements. We prolong the sequence
{xn;nePN} by the axiom of prolongation. Let =<y be the great-
est element such that for each 3, 1 £ 3£ oc,, the class
xg {xﬁ} has at least two elementa, Evidently <y PN for each
ie¢ FN. The sequence {cci? is a descending one. Therefore there
exigts 3 such that for each ic FN we have 1€ 3’ € oc 4. Const-
ruot N{ xin,IE-, 1€ FN}; by a consequence of the axiom of pro-
longation, the class has at least two elements, too. At the sa-
me time, however, N{X, Tt -fx,f} 31€PN}c » and » is a functi-
on ~ a contradiction.

Thus let k ¢ FN be such an element for Which X, is a func-
tion. Since » ¢ xk we obtain that X e Sdge3 18 a function
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which is a one-one mapping of (4, onto (4. It is true now
that P | “ =% M @ = (recall that the domain of a monad
is a monad); this completes the proof.

Purther we shall formulate several criteria which enable

us to verify whether 1 < oo

Lemma 7. Let Fe Sd{c}. F be a function, If F» U= My
then the following are equivalent:

(1) @3 ¢

() vy)ly e @ => 1"yl @, has at least two ele-
ments)]

(3) (v ly e 4y = 1yt n ¢, is infinite))

4) v ilye @y = (F 1"y n 5 is a nontrivial monad
in ;:{; M

Proof. For (1)=> (4) see Theorem 6. The implications
(4) => (3) and (3) = (2) are trivial. For (2) = (1) realize
that -1(1) says actually that , (% (“, and hence, in accor-
dance with Lemma 6, the function P is a one-one function and
therefore 11 (2) is valid.

Remark, It is possible to rewrite (equivalently) the sta-
tements (2),(3),(4) using only the quantifier 3 .

Finally, we prove that for each monad in %~ there is no
proper class szdv which is a part of the monad. The assertion
is interesting with respect to the prolongation theorem which
implies that in each infinite & -class (and therefore elso in
each semiset) there exists an infinite set which is a part of
it. Thus, if we want to use the direct analogy to the prolonga-~
tion axiom for classes, we Mave to turn to the technique of
Sd_‘; classes (see [S - V 21),
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Theorem 8, Let Xe Sdo. Then
(vx,y) [X"ix} € w(y)& X" {x? has at least two elements] =>

= w(y) = wlx).

Proof. If z £ x, then obviously X"zt & @ (y) and " {z}
has at least two elements. Define functions Fl' F2 as follows:
for each t let Fl(t) be the first element of X"{t3 end let
Fz(t) be the second element of the same class. Then Fl,erSdo
and FY @(x) = w(y) for 1 = 1,2, This implies <u.(y):§ “(x).
If wy)= (oo(x) then Fl = Fz,which is a contradiction. Thus
e (y) 4 m(x).

Remark., Theorem 8 and also the following Theorem 9 hold

obviously also for the relation {%’.—3 .

Theorem 9. Let « be a monad in 2 , Then
ﬂ[GXanV) (X a proper class& X < (w) .

Proof. Let y € &+ and let there be a proper class Xe Sdy
such that X € «(y). Then there are x, X such that X"{x} = X and
Xesd . Since X £ w(y) we have Xnix} < @(y) and by Theorem 8
the assertion (u.(y) < (u.(x) holds. Define (by induction) a
function G by the rule: for each t let G(t) be the smallest e-
lement of X"{t} - rng(Gt{z;z2<t}{). Evidently GESd, and G is
@ one-one function. Purthermore, G(x)e X"™{xt < (y)e Thus G is
e one-one mapping of x into (y) and hence x~ y; this is in
contradiction to w(y) < w(x).

§ 3. In the last part of this paper we shall formulate
several interesting statements concerning algebraical proper-
ties of the relation 2, .

{c}
Theorem 10, There is no maximal monad (in ordering by
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{?} )e

Proofe Let & be a meximal monad. Let x,y € A and xy.
We claim thet w ({x,yt) &3« » Obviously (ix¥y}) &y -
Since e"{ix,yit = {x,yt = « we have w(ix,y}) & @ due to

Theorem 8,

Theorem 11, There are uncountably many minimal monads
in . =
(in¢Z5 e
Firstly we prove the following assertion:

Lemma 8. * is a minimel momad (in {é} ) iff each func=-

tion Fe Sd{c} is either constant or one-one mepping on “w .

Proof. Suppose @ 18 not a minimel monad. Then there is
e monad v such that »  J; 4 and ¥ 1is not triviel. This im-
plies the existence of a function Ge Sd{c} for which » = G"w
and G is not one-one mapping. Thus G is a constant function,

which is a contradiction (» is not a singleton).

Conversely, let ¢ be minimel. Let Fe Sd{c}, F be a func-
tion which 18 not one-one on @& , We shall prove that then F
is a constant function on &« . By Theorem 5 we know that F*
is & monad. Moreover, F" u {;_f} @ o According to the defini-
tion of minimal monads we have, however, that F"« is a sing-

leton and therefore F is constant on « -

Proof of Theorem ll. We shall prove that for each count-

able system of monads {(ui§ there is a minimal monad . which
is a proper class and which is disjoint with all Wy
Let us enumerate all functions of Sd{c-,‘,- denote them Pi‘

We shall construct a descending sequence of proper claasses
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X, € Sd(o; for which two conditions hold: F, is either comst-
ant or one-one on xi and xi(\ “q #. The classes xi will be
constructed by induction. Let X, be formed, we produce Lina
in such & way: Divide X, into two disjoint proper olasses X,
Xy = X, Then the monad (4, is & part of one and only one
of them., Purther we consider just the class from the couple
X;, X; - X, which 1s disjoint with (4441 - denote it Y .

Now we investigate riﬂr Y. Iz Faal Y, is a set, then
1'1+1r e Sd{ck' Denote u = Y n dw(rid)' In this case, we
put x“l = ¥; - u, Let further ]?“1 r Y, be a proper class. Then
either P, ,* ¥, is a set or P1+1" ¥4 V. In the first situati-
on we have Pi+1" Yie Sd{ci’ Let t be the smallest element of .
P, 1" Yy such that (F;iﬁ"{t}#v; such a t exists since Y; is
a proper class. We shall put now X, ., = (inl)"{t}. ItP 0" Yy
is a proper class, then 1';11 generates a decomposition of Yi
according to the equivalence x = y = F(x) = F(y); denote

1243 tePmY, the system of classes of the decomposition. In this

second case we shall put x1+1 = {2z 2z is the smallest element
of Z,& te Py 3,

Let us construct NX;. The intersection is a proper -
class and therefore a figure in Z; . We claim that for each
Fe Sd{c& the function F is either constant or one-one on nxi
and that NX; N «,; = @, The asgertion NX; N @y = § is tri-
vial since for each (g e have X3 N My = #. Let further be
Fie Sd{d; then - according to our construction - the function
l‘i is either constant or one-one on X;+ The seme is therefore
true also for NX,.

Because NX, is & proper class, there is a monad in NX;
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which is a proper class, too. Thus we have constructed (see
Lemma 8) at least one proper minimal monad.

It 1a easy to verify that we can produce an uncountable
amount of such monads. If there is only a countable number of
minimal monads then we create - in accordance with the above
mentioned procedure ~ a next minimal monad which is different

from all preceding ones, This completes the proof.

Remark. It follows from the results of J,B., Paris concer-
ning non-standard models of PA that there is a monad which has
no minimal monad "under itself",

Note further that using the familiar construction of the trans-
finite induction one can prove (by means of the axiom of choice
and the axiom of cardinalities) that there is a chain oL of mo-
nads in{%} » with ordering {;_2} of type .0.1 such that each mo-

nad 1n{%} "lies under" a monad of the chain [ .

Theorem 12, (I, @) C @ By ¢p & wp dhy ¢y

Proof. We know from the previous theorem that there is an
uncountable amount of minimal monads. We prove now that there
are among them two monads which are not comparable with reapect
to ordering {§§ « Thus, if «,» are minimal monade and either
@ FEyv or v{_:z} & holds, then we have w (3> . But the-
re is only a countable number of monads like these, since the-
re is just a countable amount of functions from Sdg,; which are

one-one functions,
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