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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,3 (1982) 

MODEL-THEORETIC PROPERTIES OF CAUSE-ANDEFFECT 
STRUCTURES 

Kurt HAUSCHILD 

Abstract: Some questions of axiomatizability and decida­
bility connected with the study of so-called cause-and-effect 
structures (as introduced by me under the influence of von 
Wright) are treated* 

Key words: Causality relation, axiomatizability, decida­
bility* 

Classification: 03A05, 03B25, 03C20 

Let a cause-and-effect structure be defined as follows* 

The domain consists of a set T of moments and a set S of sta­

tes; the elements of TxS are called events* As relations and 

functions we have a chronological order <sl>*T, a time ad­

dition + :T?< T — > T, a possibility of events O & T*. S, an 

actuality of events O £ Tx. S, and a cause-and-effect relation 

.—* S Tx S>̂  Tx S (we write t,s I—>t',s' instead of 

»—>(t,s,t ,s ))• The axioms we assume to be fulfilled by cau­

se-and-effect structures are 

(1) <T.<, + > is an ordered abelian group 

(2) V t 3 s O (t,s) 

(3) V t 3 n a (t,««) 

(4) Vt,s( a (t,s) — > 0<t.s)) 

<5) Vt1,s1,t2,s2((tJL,s1F-» t2,s2)Aa(t1,s1) ~->D(t2,s2)) 
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<6) Vt 1,8 i,t r8 2((t r» 1h~> t 2 #S 2)—>t 1-< t2) 

(7) Vt1,s1,ta,s2tt(((tJL,s1^->ta,s2) «~> 

<r~^(tl • t,S1J—~> tg • t,S)) 

(8) Vt,s( 0(t,s) — > 3 t \ s ' ( 0 (t\s\/\(t\sV->t ts))). 

Let CES denote the class of all cause-and-effect structures. 

Cause-and-effect structures differ from causality structu­

res as introduced (under inspiration of L13) in 121 in that 

the axiom (5) of 12} constating, intuitively spoken, that "the 

behaviour ot the system in the past is uniquely determined" is 

missing* 

Given Ot -~<T^St< ,•, O , r~» , 0>e CES„ there is a natu­

ral way of embedding Ot into a causality structure Ot' by pro­

ceeding as follows* Let Ot0 * < (T;K T ) U (Su-ts0^), < \ + \ "C>\ 

r—> , Q >, where 

< ' « K < t 1 , t 2 > t < t 3 , t 4 » :tx<. t 3 v(tJ L
 s t 3 A t ^ t 4 ) ] 

* ' * ^ . « t 1 , t a > t < t 3 , t 4 > , < t 5 , t 6 » : t x • t 3 =- t 5 A t 2 • 

* *4 = l a 3 

0" « K < t 1 , t a > , » > : ( t 1 -- 0 A < X t a , s ) ) v ( t ^ O A s * sQH 

V->' * ^ « t 1 . t 1 > , s l t < t a , t 2 > t s a > : ( t 1 » t a * O A t \ « r - > 

\—> t \ s ) v (tx4-0A t24=0At1<r t2)3 

° ' * " ? < < t 1 , t 2 > t s > : ( t 1 « 0 A D ( t 2 , s ) ) v i t ^ O A s = m0)i , 

D i s obtained from Ot by adding a one-state (and, hence, 

uniquely determined) "past" which precedes the whole "world" 

Vt and (in order to secure (1)) a one-state "future" (tfee sa­

me state as in the past) which follows the whole Mworldw Ot 

Of course, the Mmetatheoretical complicatedness" of Ot' i s not 

exceeding that of 01 although the technical treatment of OC 
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may be more labonrious than that of Ot . This gives »otivati-

on to investigate the model-theoretic properties of causality 

structures by investigating the model-theoretic properties of 

cause-and-effect structures. 

Let 01 « <IuS,< ,+f O f I—> f Q>€CBS be called proper. 

if, for every <tfs > e 0 » there is D'f T ^ S K I ^ S such that 

<t,» > € D # and, likewise, OL' » <XuS,< »•» 0 • *-> » D*> CCES. 

The class of proper cause-end-effect structures wiXX be denot­

ed by PCES. 

Theorem 1: With respect to the signature < ,+,0, »—> » 

Q > , PCES is not E C 

Proof, fe demonstrate CES\ PCES not to be cXosed under the 

operation of taking ultraproducts. 

Let VI a » <(o>* • cj )^Sn, <,•, O n. v—»n, O n > ( n e o > ) 

be defined as follows: 

1» < co* • &>,-<,• y is isomorphic to the additive group of in­

tegers 

%. Sft « -fOfif2f3*x (o>* + <D ) 

3. 0 Q « « x , <O fx» J X 5 0(2)Ax^2n? 

u-C<xf < l f x » J X S X(2)A x^2n • if 

vl<x, < 2 f x » :x£Qv (x = 0 ( 2 ) A x ^ 2 n • 2)] 

u { < x , < 3 f x » : X > 1 A (XSS X ( 2 ) v x > 2 n • 1)5 

4 . r -^ n * 0 * n ( ( x l < y , x > i x ' , < y ' , x ' » ! 

J (yty's3AX# a x*2 / \0 < x ^2n+l) 

V(y*y'-3Ax'»x+l Ax.2"2n*l) 

v (y s y ' s 2Ax'=x+ lA x < 0 ) 

v(y sy'a2Ax'=x+2A0 -£x) 
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<+*-

v ( y s y =1 A x =x*2) 

y{y=:y#=OA x '~X*2 

v(<x#y>=< 0 # 2>A<x ' # y '> » <1.3>) 

v(<x#y>» <2n+l,I>A<x* #y*>« <2n+202>) 

v(<x»y>s: <2n*2#2V\< x*#y'>* <2n+3 f3>) 

v K x t y > = < 2 n # 0 > A < x
#

f y ' > = <2n*3#3>H 
5 # D n * Onr\( {<x,<0,x>ix<2nl<J 

4 « x # < l # x » ;x*<2n+llu 

Kx,<2 # x>> :x * 2n*2? ^ 

« x # < 3 # x » ix:>2n«-2}}. 

01^ is illustrated by fig* 1 ( O ^ cannot be taken frons the 

figure itself, but this does not natter)* 

4 

—*-

- * » > • 

-> x =0 

Fig. 1 

In this figure, the event < x # < y # x » is marked by a cross 

at the point <x#y># and two crosses are connected by an arc if 

and only if the corresponding events are in cause-and-effect re­

lation (Note that!—> is net transitive!). It is easy to check 
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that each 01 i s CES (the v a l i d i t y of (5) i s based on the fact 

that s t a t e s belonging to di f ferenct events are di f ferent - a 

fact which cannot be taken from f i g . 1 because < x , < y , x » i s 

simply coded b y < x , y ) ; the v a l i d i t y of the remaining axioms can 

immediately be seen) . On the other hand, no (A n i s PCES. For 

instance , there i s no Ol'n * <i co* • co I u s , < ,+ , 0 n , ^ n . 

D » e CES such that <2.<0,2> > € O ' For, assuming n II 

<0,<2,0>> € a * , we have, by ( 5 ) : <1 ,<3,1>> ,<3,<3,3>> . . . . 

. . . ,<2n+ l ,<3 ,2n+l>> , <2n+2,<3,2n+2 » « D * , and, again by (5 ) , 

< 2 , < 2 , 2 » , < 4 , < 2 , 4 » , . . . ,<2n+2,<2,2n+2>> e CV, but 

<2n+2,<3,2n+l>> & O* , < 2n*2,<2,2n*2»e. On i s in contradiction 

with ( 3 ) . 

Next we show that „ TT r> 01 / 7/t c PCES, where ^ i s a 

non-principal u l t r a f i l t e r over co . 

Let us inves t igate the structure ^ ^ 0 WQ/'VL . The or­

der i s of type ( a>* • <~> )•(-_:* + f ) , so that the moments can 

be coded by couples < ± cc ,n>, where o£ e nz , n G eJ* + CJ . The 

substructure induced by a l l events poss ib le in moments of type 

<0,n> i s i l l u s t r a t e d by f i g . 2 : 

/ 
_0 
\ 

__*_ -^x— - # r - • X — > 

4 t Ь * - —-X— 

X 

—rf— -—X-

— X -

: ŕ~~~ 
ч— 

__x— 

-__#_ 

X 

—X— 

—и 

X 

-*— 

__x— 

—^, 

—*>> 

< - X — —*~~ < — • — 
— ^ - —*__ __*_ —к— — ^ * * 0 

Fig. 2 
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The substructure induced by a l l events possible in moments 

< oC »n^ where <ot ,n > i s the moment attached to the event 

p of _-,"£!".._> M n/W> represented by the sequence 

i<2n,<2,2n>>l necV is illustrated by fig. 3: 

<*-

«-*-

£-<Ч»V'V*ь.V> 

ЬC = 0 

Fig. 3 

For moments resting, the corresponding substructures are 

illustrated by fig. 4 ( < o 6 , 0 > ^ 0 ) , fig. 5 (0 •< < cC ,0>*<c<r
o
.0» 

and fig. 6 ( <o6 ,0 >><o6 0 » : 

-X * к * * * * * ^ * >_ — м - X —*_ -x-

„ *_ . _ V > 

vЧ -=0 

Fig. 4 
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* ^ 

* *=:£> 

Fig. 5 

<-*- _̂__.̂  x —̂__JK__ __̂  _̂—̂ __—̂  —̂ —__̂ __̂ . 
* = 3 

Fig. 6 

For perspicuity: the difference between the Oi a and 

TT^^ VC /QJi consists in that the "distance" of the "criti-

cal points" in Ol -<0,<2,0>> on one side and 

<2n+l.<3,2n+l» , <2n*2,^3,2n+2» , <2n+3,<3*2n->3» , 

<2n+2,<2,2n+2» on the other side - has become i n f i n i t e in 

TT Ot/QJt . m, e co n' 

If c6, 4=oc , then the substructures induced by the Mo­

ments of type <oC,,n> and <cC2,n> , respectively, are, with 

respect to i—-> , "not in contact" with one another. This enab­

les us to solve the problem of finding an alternative actuali­

ty relation for an arbitrarily given event <t,s> by restric­

ting ourselves to the substructure to which <t,s> belongs* 

In case f̂t,s> belongs to a substructure as described in 

- 547 -



f i g * 2 , f i g . 4 t f i g . 5 , f i g . 6 , the problem i s t r i v i a l . ¥®r 

the s u b s t r u c t u r e descr ibed i n f i g . 3 t we f ind the f o l l o w i n g 

p o s s i b l e a l t e r n a t i v e a c t u a l i t y r e l a t i o n s ( Q , c o i n c i d e s with 

that of the o r i g i n a l a c t u a l i t y r e l a t i o n i n «J£& (& xJ ^ ? 

i s the p o s s i b i l i t y of e v e n t s i n tha very same ^ TT it J (IX ) : 

D* * 0 A ( k<< oCo»n> t<0, < o C 0 , n » > i n < - n 0 - l i u 

{<< c c 0 # n > , <1, < o c 0 # n » > : n < n 0 - l ^ *-' 

{ < < c C 0 , n 0 - l > , < 2 , < c c 0 , n 0 - l > > > ? u 

i < < o c 0 # n > r < 3 t < o £ Q t n > > > : n ? n Q ) J 

O j *- 0 rs ( -L« c 6 o t n > t < 0 t < o C 0 , n » > : n c n 0 - a i ^ 

* « c c 0 , n > , < 3 , < o & 0 , n » > :n2rn 0 -3?) 

D ^ * <> n f { « o c o . n > t < l t < c c o t n > > > : n < n 0 * <-> 

i < < o c 0 » n > , < 2 , <©<:0tn>>> :n<n Q }<J 

* - < < o c 0 . n > , < 3 , < c ^ 0 , n > > > : n > n 0 O . 

Each event i n f i g . 3 be longs t o e i t h e r O ^ , D « or PI *; t h u s , 

TT OIJQ& i s proved to belong to PCES. • 
/tis & CJ n 

Let Ol' be the c a u s a l i t y s t r u c t u r e obtained from Ct' by n n 

the method descr ibed above . C l e a r l y , the Oi are not PCS i n 

the sense of [ 2 ] . By us ing the same arguments as in the proof 

of Theorem 1 i t can be shown that ^ p " ^ OlQ/Ql i s PCS. Thus, 

we have: PCS i s not EC, as a lready announced in C2]« 

A s t r u c t u r e < T u S t < t + t O t i—» > may be c a l l e d a c t u a l i z a b l e 

law s t r u c t u r e whenever there i s D 5 v such that 

< T u S t < t + t 0 t I—> , D > i s CES. The c l a s s of a c t u a l i z a b l e cau-

s e - a n d - e f f e c t s t r u c t u r e s i s denoted by ALS. < T u S , < , • , <> t s - > > 

may be c a l l e d u n i v e r s a l l y a c t u a l i z a b l e law s t r u c t u r e whenever, 
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for every <ftts>€ IxS, there is a O £ <> containing <tfs> 

such that <TuS,< ,+, 0 , t—> t D > is CBS (the latter-menti­

oned structure is, then, automatically PCES)• The class of all 

universally actualiz&ble law structures may be denoted by UALS« 

It may be remarked here that the terminus "law structure" is 

motivated by the imagination that (luS,< #*»<>» h~>> descri­

bes the "physical laws1* of our "world" <TuS,< ,•, 0 , t—> 9&>, 

compare C 23. 

By "forgetting" the D in the proof of Theorem 1, we 

get at once 

Theorem 2: The class UALS is, with respect to the signa­

ture << ,+, <> § .—>> t not relatively finitizable to ALS (i.e. 

there is no f such that UALS * ALS n Mod ( ̂  <$> f ))• 

Theorem 3: With respect to the signature (< ,+, 0 ti—>>> 

ALS is not EC. 

Proof. We demonstrate that Mod (£l-U) \ ALS is not closed 

under the operation of taking ultraproducts. In order to do 

that we construct a sequence ^^n^nea) °* structures of 

Mod(W)\ALS such that TT <&J(% is ALS ( QJL being non-

principal)* 

Since the explicit definition of the intended <& would 

be very clumsy I think it better to restrict myself to a sort 

of the geometrical description. Let the geometrical descripti­

on of the graph representing <X (without D ) in fig. 1 be 

simplified by a box with three inputs Ij,I2,I3 and an output 

0 like in fig. 7s 
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Fig. 7 

Imagine the points <x,y> with 0^ x^2n+3 lie within the 

interior of the box while the points of *< x,y>:*<0Ay = 2l, 

-Kx,y>:x< 0/\y e-C0,l*, i< x,y>:x>2n+3 A y = Z\ belong to 11$ 

I
2
,I

3
,0, respectively. Then, by definition of Oln$ we can say 

that "the interior of the box causes the impossibility of actu­

alizing the points of I^
M
* 

Let &Q be represented by the following collection of 

boxes B-,B
2
,..» connected as described in fig. 8 (B

x
 being the 

"earliest" box; a "latest" box does not exist): 

?a& 

'. TллXwUb 

Fig. 8 
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The construction is not quits uniquely determined sines the 

length of the connections between the boxes are not determi­

ned, but every such construction satisfying the following as­

sumption will do* 

Assume that the connections between & n and B . are so 

"'long* that, if <x*v> and 4x*,y > belong to different boxes, 

Ix - x l^n* This assumption may be abbreviated by (^). 

How let us regard the ultraproduct TT *&/% . The 
(TV & OJ U 

moments of M TT tfr^/tyl can be coded by couples <oC tn> in 
IYU €• w MM 

the same way as in TT^ Ol^/QJl * The substructure belonging 

to <oG»n> is defined analogously* Every such substructure is 

represent able by a combination of graphs like in fig* 2,3,4,5, 

6; because of (*), any such representation contains at most one 

of the subgraphs represented by fig* 2,3* By same arguments as 

in the proof of Theorem 1, we conclude that TT &n/QJ(, is 

ALS (even UALS). ft 

Seen from an intuitive point of view, the use of the ter­

minus "possible event** is justified only when dealing with pro­

per cause-and-effect structures (respectively, with universal­

ly actualizable law structures)* Therefore, the theorems given 

here may be interpreted as an argument for that the intuitive 

contents of the notion of possibility cannot be reasonably cha­

racterized by a finite number of axioms in a first order langu­

age. 

Let us regard some decidability questions. Of course, ALS 

cannot be expected to be decidable. Even subclasses of ALS the 

structure of which seems rather simple turn out undecidable* in 
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view of the .following 

Theorem 4s ALSnModHVt B !!s 0 (t.s)?) is undecidable. 

Proof* Let R c co x o> be the QUINE relation (see C3J); 

then, full arithmetics is interpretable in <o,R> , hence, it 

remains to show that <G> ,R> is interpretable in some model of 

ALSnModHV t 3 !!• 0 (t#s)5). 

Let X * <( o* • CJ ) <-» {*BQ} * c-> ).<,•, 0 , f-^8> where 

< co* •o>,<r, + > is isomorphic to the additive group o£ inte­

gers, and: 

0 ** *<x #<s 0-x» :x e o* • o S 

f-~»B = 4 < x t < 8 0 , x > t y , < 8 0 . , y > > t ( i ? O A y^OARxyA x < y ) v 

( x < O A y >0)J . 

C l e a r l y , X i s a s t r u c t u r e be longing to 

ALSo Mod ( W t 3 ! ! s 0 U . s H ) i n which < co ,R > i s i n t e r p r e t a b ­

l e (the i n t e r p r e t a b i l i t y of < < - J , R > i s based on the symmetry 

of R ) . • 

2 

Let S c CJ be an arbitrary infinite relation which is 

-u-ther symmetric, or antisymmetric such that V x,y(Sxy—>x<y). 

Then, \ C J , S > can be shown to be interpretable in some model o£ 

ALSnMod(Wt 3 ! ! <> (t,s)}) by the method just used in the 

proof of Theorem 4. In regard of this, 

ALSr. Mod (~ V t 3 ! Is 0(t,s)?) can be shown to be universal 

vMK-universalH in the sense of 143) with respect to interpre­

tability. 

Finally, decidability of special causality structures is 

discussed. The causality structures given by examples 1,2 of 

123 are interpretable within the real plane and hence deoidable. 
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In case t h e s e examples are v a r i a t e d i n such a way t h a t there 

are i n f i n i t e l y many "forking poin ts ' 1
 f i n t e r p r e t a b i l i t y w i t h i n 

t h e r e a l plane w i l l be l o s t . Therefore , i t seems t h a t there 

are very "few" c a u s a l i t y s t r u c t u r e s t h e t h e o r y of which can be 

expec ted t o be d e c i d a b l e . 

Theorem 5: There i s an undecidable 3) « { T u S , < , + , O . 

V—> , Q > £ PCES such t h a t S * = < Tu S, < . • , O » »—> > i s d e c i ­

d a b l e . 

Proof . Le t T * ft ( the r e a l numbers), S = BxB9 <R,< , • > 

t h e a d d i t i v e group of r e a l s , and: 

<> » 4 X x . < 0 f x » : x c f i l u { x , ( l , x > 5 : X € R A X > 1 ? 

V-*--: $<x ,<O f x> t y t <O t y» : x < y ^ l i u 

K x , < 0 , x > t y , < O t y > > H ^ X A y -- x2l O 

* < x , < l , x > , y . < l , y > > : l - 7 X A i y = x 2 v y =- x 4 ) . 

< T u S , < , + , 0 ,1—>> i s i n t e r p r e t a b l e in the rea l plane and, 

hence , d e c i d a b l e . 

Le t K£R (regarded n o t as domains but as f i e l d s ) a sub-

f i e l d such t h a t 

a. K i s undecidable 

b . For every a c K , \ / l a . £ k . 

Note that such a field exists by 153; another construction was 

already given in L6.}, but, as pointed out in 113, needs some 

modification which will be given in 1.83. 

By b. and the property of being a field we have 

l) if € e K 0,l^t<x, <£ ,x>> h->< y, <£ ,y>> ,x> i and x€ K, 

then y£ K 

n ) if ee -C0,1T,<X, <& , x » H->< y, < e , y » , x > i and x£k. 
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then y4>-* 

Hence, by i ) and i i ) , for a l l x;>l , 6 € -10,13 we haTe: 

<x, <& , x » H->< y t <e , y » i f and only i f 

e i ther x s K , yeK or x<£k, y4 *-• 

Hence, \—> works, for elements > 1, separately on K and RN K# 

Therefore, 

D * ^ x , < 0 , x > : x ^ l 5 ^ 

{ < x , < O t x » u ? l A x a 5 u 

- K x , < l , x » SX^lAX^K^ 

represents an actual i ty relat ion for T u S , < < , * , O , I—>> , i * e . 

9) * < T u S , < - • , O # r-> t • > c CBS ( i t can eas i ly be seen that 

0)€ PCES). 

It makes no d i f f i c u l t y to prove that the f ie ld K i s inter-* 

pretable in 26 . The events of shape < x , < 0 , x » , X P - 1 can be 

characterized by 3 H < t 1 , s 1 > « t , s > H^ < ^ ^ , 8 ^ ) . Let the e l e ­

ments of K greater than 1 correspond to the events of shape 

< x , < 0 , * » € D f x > l . The addition in K i s that of T, and the 

multipl ication in K i s definable by using the def inabi l i ty of 
2 

the relation f(x) = x (this definability is based on the choi-
2 2 2 

ce of H-> ) and 2xy * (x * y) - x - y . 

By interpretability of K in 9) and a., 2) is undecidable. • 

Analyzing the last proof and the proofs referred to in it 

•very structure of cardinality *- CJ can be shown to be inter-

pretable in some actualization of 3V • Thus, PCESn Mod(Th(3V ) ) 

is even universal with respect to interpretability. 
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