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COMMENTATIONFS MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,3 (1982) 

ON THE REPRESENTATION OF ORTHOCOMPLEMENTED POSETS 
Frantisek KATRNOSKA 

Abstract: The poas ib l l i ty of the representation of or t -
homodular orthoposets i s discussed in 133, [4] , [73 Klukowski 
143 used the notion of u l t r a f i l t e r , which has been introduced 
by 0 . Prink £23, for any poaet and proved the theorem of Sto-
nean type for Boolean weakly orthomodular orthopoaeta. In t h i s 
paper the notion of an M-baae defined by A.R. Marlow £53 i s us­
ed aa a convenient tool for the conatruction of the represen­
tat ion of orthocomplemented poset. Some consequences of the 
representation theorem are deduced. 

Key words: Poset, Boolean algebra, u l t r a f i l t e r of Boole­
an algebra, Stone space and related topological notions* 

Class i f icat ion: 06A10, 06E15, 54H10 

§ *• Baalc roUPM and def&nlUPBg 

Definition 1 [33* An orlhpcpmplomented poset i s « part i ­

a l l y ordered set (P, . £ , 0 , 1 , ') containing a universal lower 

bound 0, a universal upper bound 1, and having a unary opera­

t ion ':P—> P called orthocomplementation which for any a,b&P 

s a t i s f i e s 

(1) a £ b imp l ies b '^ a' 

( i i ) ( a * ) ' » a for each a eP 

( i i i ) a / \ a ' =* 0 and a V a ' * 1, a g P . 

The elements a , b t P are aald to be orthogonal i^ a-£b'. We shal l 

write then a l b . In a contrary case, i . e . i f a 4- b' for a , b c P , 

we sha l l c a l l a, b mutually non-orthogonal, and then we write 

a ^ b. 489 



Definition 2 . Let (?, .£. , 0 , 1 , ') be an or t ho complemented 

mmmet. A nonempty subset 04-McP i s said to be an N-set of P, 

i f for any a-.beM l i b holds. The N-aet MQcP i s a maxfmal 

MrfleJt, i f there i s no such N-aet McP that MQcM, UQ^U. 

Proposition 1. I f ( P , ^ , 0 , 1 , ') ia an ort ho complemented 

poset , p^P, p -=j-09 then there e x i s t s such a maximal N-set McP, 

that peM. 

Proof: It la obvious that A -* ip\ ia an N-set. Let X be 

the set of a l l N-seta of P containing the element p. X i s par­

t i a l l y ordered by inclusion. Let {M^f^ (S - the set of index­

es) be a chain in X. The se t D « ^ ^ M ^ i s also an N-set. 

The va l id i ty of the proposition i s then a consequence of Zorn's 

lemma. 

PgflniUon 3. i*t (P1 9^9o l f i1 9 ' ) , (P 2 , 3 , o 2 , i 2 f *) be 
two ort ho complemented posets. A mapping f :Pj—-> P« i s cal led an 

{•fftfaOMPrPhliBt i f 

(1) a 9 b c P 1 9 a £ b implies f (a ) =3 f(b) 

( i l ) f ( a ' ) » Lf(a)D* for each a e P 1 

(iii) f(Ox) n 0 2 

An orthomorphism f:P^—> P2 which is bijective, and such that 

the inverse mapping f .P ?— > Pj ia al80 an orthomorphism is 

said to be an prthoiaomoyphJ.am-> We shall call then the posets 

P19 P2 orthQtgOM9fPMC* 

5 2* M-taaaa and ttetr ctiajac^rtaflUop* T*-« notion of M-
base was introduced by A.M. Marlow [ 5 ] for l o g i c s . Without any 

modification we can use the def in i t ion of M-baae also for o r t -

hocomplemented posets . 
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Definition 4 [5J. Let ( P , - £ , 0 , 1 , ') be an or tho complement­

ed poset. The non-empty subset 0 + B c P i s called an M-baae of 

* , I f 

( i ) U B 

( i i ) i p , p ' } n B#.0 for each p e P 

( i i i ) I f p e P , q s B , q J_ p then p^B. 

I*ejimj_A# .Let ( P , ^ , 0 , 1 , ') be an orthoeomplemented poset, 

then the following conditions are equivalent: 

(a) The se t B c P i s an M-base of P 

(b) The set BcP s a t i s f i e s the conditions 

I p c B , p £ q implies q&B 

I I card Hpfp'}r\Bl * 1 for each p e P 

(c) B la a maximal N-aet. 

Proof: (a) =-=-> (b) 

(b) I Let p e B , q e P and p ^ q . Since p £ q * ( q ' ) ' , we get 

p i q ' , How ( i i ) , ( i i i ) of Definit ion 4 implies q ' ^ B . There­

fore q € B. 

(b) II follows immediately from ( i i ) and ( i i i ) of Defini­

t ion 4* 

( b ) = - > ( c ) . Assume that the set BcP s a t i s f i e s (b)I , 

( b ) l l , and l e t p . q c B . Then p ^ q . Indeed, i f p ^ q ' then (b)I 

would imply q'e B, which contradicts (b ) I I . We prove that B i s 

a maximal N-set. 

Let B^ be such an R-set in P that B c B p B+B^, I f p tB^NB, 

then by (b)II we should have p'& B c B ^ But th i s las t argument 

contradicts the fact Bl being an N-set. The va l id i ty of (c) i s 

now established. 
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(e) =-> ( a ) . Let B c P be a maximal It-set. We sha l l *fcow 

that B s a t i s f i e s ( l ) - (111) of Definition 4 . 

(I) For each pcB v p-fcO we have l ' » 0<rp» Therefore 

p ^ l . The maximaHty of the H^set P implies l c B . 

(II) Let p « P , and assume that p $ B , p ' ^ B. Maximal i t y 

of the H-set B Implies the existence of such elements Qi , q2& B 

that p JL q^ and p'i. q 2 . From t h i s i t follows q^ X q2 - a con* 

radict ion. How I t can bo eas i l y seen that for each p e P, 

card C-tPtP'JnB] » 1. 

( i l l ) Lot pc P, q E B and q l p . Then p $ B because B i s 

an H-set. 

Corollary. Let ( P , ^ , 0 , 1 , ') be an orthocomplemented po~ 

s e t . I f p e P , p-|-0f then always such an M-baae B ex i s t s in P, 

that p e B . 

Proof: evident. 

Remember that i f ( P , ^ ) i s a poeet, p , q e P , P^q , t h e n < p f q > « 

» { x 6 P | p . * x £ q i . 

The following lemma shows a method how to construct new M-ba-

ses from a given one* 

JOLmSL-2.* I«ot (P. ^ , 0 , 1 , ') be an ortho complemented poaet, 

B an M-base of P, p € P \ B 0 , p-J-0. Then the set B^ * 

* ( B \ < 0 , p ' » u < p , l > i s an M-base containing p. 

Proof: fbllows immediately. It suff ices to verify the va­

l i d i t y of conditions (b)I , (b)lLof Lemma 1 for B^. 

Cnrollarv, I f ( P , ^ , 0 , 1 , ') i s a Boolean algebra, then 

each u l t r a f l i t e r of P i s an M-base in P* 

Proof: evident. 
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But the contrary assertion may .be false. 

Pronoaition 2. Let (Pf ^ f O f l f ') be such a Boolean algeb­

ra that card B>8. Then P contains an M-base, which la not an 

ultrafilter. 

Proof: Let Bl be any M-base in P. First of al l we shall 

show that we can always find such elements p,q€B^ for which 

p £ q, q Jfz. p. Suppose, on the contrary, that for every p-qeB^ 

holds either p^q or q^p. Because eard B^z.4 must such p.̂ 6 B f̂ 

1 * 1,2,3 exist that P1^P2<P3<--» Now let us take the e le­

ment a * P3^P2# Then *£P<>9 P2 + B i a n d ** follows that a 4%* 

Therefore a'e B-j. But a'* (pjApp's* P3VD2# Tn* ^ac* * n a t n**~ 

ther p-»vp2^P3 nor P-J---P3VP2 contradicts the assumption about 

-v 
Now let BQ be an ultrafilter in P. By Corollary of Lemma 2 BQ i s 

an M-base. Let further p, q be such elements of BQ that p £ qf 

q 4 p. Then pAq4-Of pAq^B0 because B0 la a proper f i l ter . 

Lemma 2 Implies that B̂  « (BQ\ <OfpAq» u<(pAq) #
f l > ia an 

M-base in P. But pAq$B-^ although pfq£B^« 

Therefore B̂  i s not an ultrafilter in P. This completes the proof* 

Remark, With l i t t l e modifications one can prove an analo­

gical proposition for the so-called Boolean orthomodular ortho-

poaeta. In thla case the ultrafilters are considered in the sen­

se of Frink's definition £21. 

§ 3 . Representation theorem for Qrtft9CPllffiklMnlft4 PWta 

Notations. Let (P,^ f O,l f ') be an or tho complemented poaet 

and denote by M(P) the aet of al l M-basea in P. If pcPt P*0 

put Z(p) «{BcM(P)|B*piand let 2(0) « 6. Finally ws put 
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2(M(P)) « 4 Z ( p ) l p £ P | . Then the following theorem of the S to ­

ne an type turns out to be va l id . 

Theorem, 1. Every ort ho complemented poset ( P S ^ , 0 , 1 , ') 

la orthoisomorphic with the orthocomplemented poset (Z(M(P))? 

&fJ-Jf M (P) f *) the elements of which, the s e t s Z(p), p e P are 

elopen subsets of zero-dimensional completely regular topolo­

g ica l Tj-8paee X * (M (P) f ^) . The set Z(M(P)) i s a subbasis for 

the topology T • The symbols £ and # denote the inclusion 

re lat ion and se t - theoret ica l complement in M(P) respect ive ly . 

Proof: M(P)4-0 by Corollary of .Lemma 1. Now we introduce 

a topology T on M(P), requiring that Z(M(P)) be a subbasis for 

closed subsets of M(P). 

( i ) The e lass Z(M(P)) i s also a subbasis for open s e t s of 

the topological space (M(P),CT)# Indeed, i f BeM(P), then there 

ex i s t s such pQ€ P, 0-f*p0 + l that P0^B# Therefore B6Z(pQ)# Now 

b l l of Lemma 1 implies Z(p) » M(P)\Z(p') for each p e P . There­

fore the s e t s Z(p) are open and i t i s also clear that Z(M(F)) 

i s a subbasis for open se t s in (M(P),CT). 

( i i ) f i s a Hausdorff topology on M(P). Let Bj,B26M(P), 

B^+Bg. Then there e x i s t s such p e P that pcB^, p'e B2# The open 

s e t s Z(p), 2(p') are then d i s jo int neighbourhoods of B^, B« re s ­

pect ively . 

( l i i ) The topological space (M(P)f <f) i s zero-dimensional. 

In fact , the basis 11 of open s e t s of the topology T i s of the 

form 11* iU c M(P) | U *±QA Z (p t ) f p ^ P , i « l , 2 , . . . , n ? . Sin­

ce Z(p i) are elopen se ta , i t follows that the se ts U G 11 are 

also elopen* 
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(iv) The topological space (M(P)f{T) is completely regu­

lar. This is a simple consequence of (ii) and (ii±), 

(v) (Z(M(P))f £ fl5fM(P)f *) is an or the complemented poset* 

The set Z(M(P)) is partially ordered by the inclusion relation. 

£ . If AsZ(M(P))f then we put A* » M(P)
X^A* Clearly 2(1) * 

*M(P) 9 Z(O) • 0f and M(P) and t are the universal uppur and 

lower bounds in Z(M(P)) respectively. According to the relation 

Z(p') * M ( P ) ^ Z(p)f p& P we obta-i i 

(1) [Z(p)]*«M(P)\Z(o) * Z(p') for each peP* 

It can be easily seen that # satisfies all requirements impos­

ed on orthocomplementatlon. 

(vi) If pfqe.P, then p.^q<=-> Z(p)cZ(q). 

(a) Let p £ q . The property (b)I of Lemma 1 implies Zip) & 

S Z ( q ) . 

(b) Assume Z(p)cZ(q) . I f p » 0 , then clearly 0 » p ^ q . 

Also l e t p#O f and suppose that p«£q* Then we can se lect such 

an M-base B that BfcZ(p). Following Lemma 2 B-̂  » ( B \ < O f q > ) u 

u < q ' f l > i s an M-base, and B-^cZCp)* Therefore B^eZCq), and 

q e B-p qeBj^ which contradicts (b)II of Lemma 1. 

Now define a map h:P—+ Z(M(P)) se t t ing h(p) * Z(p) for each 

p e P , 

( v i i ) h Is b i j ec t ive . This follows immediately from the 

def in i t ion of h and by ( v i ) . 

( v i l l ) The orthocomplemented posets (PfJ6 , 0 , 1 , ') and 

(Z(M(P))f 9 f 0 f M(P) f * ) are orthoisomorphic. The fact that h Is 

an ortholsomorphlsm i s namely a consequence of ( v i ) , ( v i i ) and 

( 1 ) . 
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SejBSk* I f for P l f P 2 e P P ^ v p 2 r e ap . PXA p 2 e x i s t s i n 

P , then the following a qua l i t tea hold: 

h(p 1 VP2) * h ( p 1 ) v h ( p 2 ) , h ( p 1 A p 2 ) * h(p j )Ah(p2» 

But i t I s necessary t o warn. The operat ions v and A in a poset 

(Z(M(P)), £ jfJjMCP),* ) a 8 long as they are defined nay i n gene­

r a l d i f f e r from the usual s e t - t h e o r e t i c a l operat ions u and a • 

Propos i t ion 3 C13# Every sero-dimenslonal t completely r e ­

gular topolog ica l Tjr-epeee X of the t o t a l character w(X) « t 

can be embedded hemeomorphlcally i n the Cantor cube B ^ s Til B f 

where &8 *i09l}9 S G S are endowed as topologica l a pa cess with 

s d i s c r e t e topo logy, and card S « tr • 

Proof: See E l l . 

Corollary. If (P,^,0,1, ) la an or t ho complemented poset 

and if card P • <v „ then the space (M(P)t(T) can be embedded 

homeomorphically in D ^ . 

Proof: Clearly card Z(M(P)) » x . If % is a basis of 

clopen sets in M(P) generated by Z(M(P)) as a subbaals of topo­

logy T t ta«n card Ql* tf . Therefore for the total character 

W(M(P)) of M(P) we get W(M(P)) * tr # Corollary follows now ap­

plying Theorem 1 and Proposition 3. 

In a special case, when (P,^r,0,l, ') is a Boolean algebra, and 

#(P) the Stone an apace of P, then the following assertion es­

tablishes the connection between the topological spaces ^f(P) 

and M(P). 

Proposition 4* Let (P,.4,0,l, ') be a Boolean algebra* 

Then the Stone an space Sf(P) of P le a compact subspace of the 

topological space M(P). 
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Proof: Follows as a simple consequence of the fact that 

the topology of the Stone space Sf(P) i s induced by the topo­

logy of M(P). 

Theorem 2 . I f the or t ho complemented posets (P-^, ^ ,0-^l . j , ' ) 

(P 2 f £ f 0 2 f l 2 f * ) are orthoisomorphic, then the corresponding tt>-

pologlcal apacea (M(P^)fCT^)f (M(P2, JT̂ ,) are homaomorphic 

Proof: Let h:P^—> P2 be an ortholsomorphlam front P-̂  on 

P ? . It i s easy to show that B i s an M-base in P^ i f f b(B) i s all 

M-base in P->. Therefore the mapping h induces a mapping toxMCP^)-* 

~>M(P 2 ) . The b i j e c t i v i t y of h implies b i j e c t i v i t y of U. Now 

i f we denote by Z^(p)f peP^ the elements of subbases Zi(M(Pi>) 

of topological 8pacea (M(Pi)fCT^), 1 » 152, then the following 

equality turns out to be val id: 

(2) fi"1 (Z2(p)) * Z1(h'*1(p)) p e P 2 

Now, i f F la an element of the basis for closed subsets of the 

topological space M(P2), then there ex i s t s such p , £ P 2 , J » 

« l f 2 f . . . f n f that P ».i Vt tyvJ* According to (2) we obtain 

^ ( p ) •lT1C^5i,Z2(pJ)) - ^ ^ V ^ " «V^Zl(h"1(*>;J)K 

Thia implies that h (p) i s an element of baaia for cloaed sub­

sets in M(P,)f and hence the continuity of t* . The continuity 

of h"1 can be ahown analogically. The converse of the theorem 

may f a l l * 

gfcajffiifc* Let be X » U f 2 f 3 f 4 j , *i * i**exp X|card T 4* 

$ U f 3 i t Z » U f 2 f 3 f 4 f 5 t 6 f 7 f 8 * and P2 • 4 j6 f Z f t t f 2i f i 3 f 4 i t 4 5 t 6 j f 

Z \ i l f 2 * f Z \ * 3 f 4 i , Z \ 4 5 f 6 i . 

Define the' partial ordering and the orthocomplement on P^, 1 » 

« 1,2 aa the inclusion re lat ion and the se t - theore t i ca l comple-
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ment respect ively . I t can be e a s i l y shown that (P^» E*^»^>^ 

and (PgjS^j .Z , ') are orthoconrplemented poaets* For-the" Bpa** 

eea M(PX), M(P2) i t may be found that card M(PX) « eard M(P?)» 

* 4. So we can see that the spaces M(P1)> M(P2) are discrete 

and homeomorphic. But the poseta P^, P̂ . cannot be orthoiaomor-

phlc, because while P2 contains three different mutually ortho** 

gonal elements, P^ contains always only at most two mutually or­

thogonal elements. 
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