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COMMENTATIONFS MATHEMATICAE UNIVERSITATIS CAROLINAE
23,3 (1982)

ON THE REPRESENTATION OF ORTHOCOMPLEMENTED POSETS
Frantilek KATRNOSKA

Abstract: The possibility of the representation of ort-
homodular orthoposets is discussed in [3],[4],[7] Klukowski
4] used the notion of ultrafilter, which has been introduced
by O. Frink [2], for any poset and proved the theorem of Sto-
nean type for Boolean weakly orthomodular orthoposets. In this
paper the notion of an M-base defined by A.R. Marlow [5] is us-
ed as a convenient tool for the construction of the represen-
tation of orthocomplemented poset. Some consequences of the
representation theorem are deduced.

K’E m;:gg: Poset, Boolean algebra, ultrafilter of Boole-
an algebra, Stone spaeé and related topt’)logical notions.

Classification: 06A10, O6EL5, 54H10

§ 1. Baaic notions and definitions

Derinition 1 [3]). An grthocomplemented poset is a parti-
ally ordered set (P,<2,0,1, *) containing a universal lower

bound O, a universal upper bound 1, and having a unary opera-
tion “:P—> P called grthocomplementation which for any a,be?P
satisfies

(1) a&b implies b’z a’

(11) (a”)" = a for each acP

(111) aAa” =0 and ava’ =1, acP.
The elements a,bc P are said to be orthogonal ir a<b’. We shall
write then alb. In a contrary case, i.e. if a & b’ for a,beP,

we shall call a, b mytually non-orthogonal, and then we write
a # be. - 489 -



Berinition 2. Let (P, &4,0,1, ) be an orthocomplemented
pemet. A nonempty subset #+Mc P is said to be an N-set of P,
if for any a,belMM a _)( b holds. The N-set locP is a paximsgl
N=get, if there is no such N-set Mc P that M cM, M M.

Proposition 1. If (P, 4,0,1, *) is an orthocomplemented
poset, pe P, p+0, then there exists such a maximal N-set McP,
that pe M.

Proof: It is obvious that A = {p}{ is an N-set. Let X be
the set of all N-sets of P containing the element p, X is par-
tially ordered by inclusion. Let iM_} o (S = the set of index~
es) be a chain in X. The set D = «YsM, 1s also an N-set.

The validity of the proposition is then a consequence of Zorn’s
lemma.

DRetinition 3. Let (Py,£,05,1), ), (Py, 3 ,0,,15,%) be
two orthocomplemented posets. A mapping £:P)—> P2 i3 called an
orthomorphism, if

(1) a,bcP), a<hb implies f(a) 3 £(b)

(11) £(a’) = [£(a)1* for each aecP
An orthomorphism f:P1—+ P2 which is bijective, and such that
the inverse mapping f'l :Pz—> P1 is also an orthomorphism is
said to be an grthoisomorphism. We shall call then the posets
P, P, orthoisomorphic.

§ 2. M-bases and their characterizatiop. The notion of M-
base was introduced by A.R. Marlow [3] for logics. Without any

modification we can use the definition of M~base also for ort-
hocomplemented posets.
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Derinition 4 [5). Let (P, <,0,1, °) be an orthocomplement-
ed poset. The non-empty subset #+BcP is called an M-base of
P, if

(1) 1leB

(11) {p,p’}n B4 for each peP

(111) Ir peP, qeB, q L p then péB.

Lemms 1. Let (P,2,0,1, *) be an orthocomplemented poset,
then the following conditions are equivalent:

(a) The set BC P is an M-base of P

(b) The set BCP satisfies the conditions

I peB, p4£q implies qcB
II card [{p,p’}nBl= 1 for each pcP

(¢) B is a maximal N-set.

Proof: (a) = (b)

(b) I Let pcB, qeP and p<q. Since p<q = (q°) ", we get
pLq . Now (i1), (111) of Definition 4 implies q ¢ B. There-
fore q¢ B.

(b) II follows immediately from (ii) and (i1ii) of Defini-
tion 4.

(b) => (¢). Assume that the set Bc P satisfies (b)I,
(b)II, and let p,qcB. Then p ) q. Indeed, if p<q  then (b)I
would imply q ¢ B, which contradicts (b)II. We prove that B is
a maximal N-set.

Let Bl be such an N-set in P that BcBl, B+Bl. Ir peBl\ B,
then by (b)II we should have p’c BcB;. But this last argument
contradicts the fact B, being en N-set. The validity of (c) 1s
now established.
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(¢) = (a). Let BCP be a maximal N-set. We shall show
that B satisfries (1) - (111) of Derinition 4.

(1) FPor each pcB, p+0 we have 1° = O<p. Therefors
P .)( 1. The maximality of the Neset P implies leB.

(14) Let pc P, and assume that p§B, p ¢ B, Maximality
of the N-set B implies the existence of sueck elements q),q36 B
that p L q; and p'l q,. From this it follows g, L q, = & eont
radiction. Now it can be easily seen that for each peP,
card [{p,p’}AnB] =1,

(111) ILet pc P, qeB-and q L p. Then p¢B because B is

an K-get.

Carollary. Let (P, £,0,1, °) be an orthocomplemented po~
set. I? peP, p+0, then always such an M-base B exists in P,
that peB.

Proof: evident.

Remember that if (P, <) is a poset, p,qcP, p<q, then {(p,q)=
= {xcP|pzx4qf.
The following lemma shows a method how to construct new M-ba-

ses from a given one.

Lagma 2. Let (P.<£,0,1, *) be an orthocomplemented poset,
B‘o an M-base of P, pe P\ Bo' p+0. Then the set Bl =
= (B\<O,p ) U <p,1) is an M-base eontaining p.

Proof: fbllows immediately. It suffices to verify the va-
1idity of oconditions (b)I, (b)IL of Lemma 1 for B).

Garollary. If (P,4,0,1, ') is a Boolean algebra, then
each ultrarilter of P is an M-base in P.
Proof: evident.
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But the contrary assertion may .be false.

Eroposition 2. Let (P, <£,0,1, °) be such a Boolean algeb-
ra that card B>8, Then P contains an M-base, which is not an
ultrarilter. .

Proof: Let By be any M-base in P. First of all we shall
show that we can always find such elements p,q& B for which
p £ q, q £ p. Suppose, on the contrary, that for every p,qe B,
holds either p<q or q<p. Because card B;Z4 must such ps € By,
1=1,2,3 exist that pj<py< P3<1l. Now let us take the ele-
ment a = p3/\pé. Then a.épz'. p2'4-.81 and it follows that a¢B,.
Therefore a'c B). But a'= (p3/\p2')‘= p:;vpz. The fact that nei-
ther pgv Py £ p3 mnor p3£ pivpz contradicts the assumption about
Bl‘

Now let Bo be an ultrafilter in P. By Corollary of Lemma 2 Bo is
an M-base. Let further p, q be such elements of Bo that p £ q,

q 4 pe Then pAq+0, PAQ c¢B, because B, is a proper filter.

Lemma 2 implies that By = (Bo\<0,p/\q7)u<(p/\q)',1> is an
M-base in P. But pAq¢B; although p,qs&B,.

Therefore Bl is not an ultrafilter in P. This completes the proof.

Remark. Wwith little modifications one can prove an anale-
gical proposition for the so-called Boelean orthomodular ortho--
posets. In this case the ultrafilters are considered in the sen-

se of Frink’s definition [21.

Notations. Let (P,<,0,1, ) be an orthocomplemented poset
and denote by M(P) the set of all M=bases in P. If pe P, P+0
put Z(p) = {BcM(P)|Bop} and let Z(0) = #. Finally we put
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Z(M(P)) = {Z(p)|pe P% Then the following theorem of the Sto-

nesn type turns out to be valid.

Thgorem l. Every orthocomplemented poset (P, < ,0,1, )
i3 orthoisomorphic with the orthocomplemented poset (Z(M(P)),
< ,8, M(P),* ) the elements of which, the sets Z(p), peP are
clopen subsets of zero-dimensional completely regular topolo-
gical T -space X = (M(P), 7). The set Z(M(P)) is a subbasis for
the topology J° . The symbols & and * denote the inclusion

relation and set-theoretical complement in M(P) respectively.

Proof: M(P)3O by Corollary of Lemma 1. Now we introduce
a topology J° on M(P), requiring that Z(M(P)) be a subbasis for
closed subsets of M(P).

(1) The class Z(M(P)) is also a subbasis for open sets of
the topological space (M(P),7°). Indeed, if Be M(P), then there
exists such p e P, O#p +1 thet p e B, Therefore Bez(po)~. Now
bII of Lemma 1 implies Z(p) = M(P)\ Z(p°) for each pe P, There-
fore the sets Z(p) are open and it 1s also clear that Z(M(P))
is a2 subbasis for open sets in (M(P), T).

(i1) 7° is a Hausdorff topology on M(P). Let B,,B,€ M(P),
BI#BZ. Then there exists such peP that p€B,, p'e BZ‘ The open
sets Z(p), Z(p") are then disjoint neighbourhoods of By, B, res-
pectively.

(111) The topological space (M(P),J’) is zero-dimensional.
In ract, the basis U of open sets of the topology 7 is of the
form U= {U c M(P) | U =, 3, 2(py), pye P, & = 1,2,...,03. Sin-
ce Z(pi) are clopen sets, it follows that the sets U ¢ % are

also clopen.
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(iv) The topoiogical space (M(P),7’) is completsiy regu~
lar. This i1s a simple consequence of (ii) amd (i11).

(v) (z2(M(P)), =,6,M(P), *) is an orthccomplemented poset.
The set Z(M(P)) is partislly ordered by the inclusion relation .
€ o+ Ir AcZ(M(P)), then we put A* = M(P)™ A. Clearly (1) =
= M(P}, 2(0) = ¥, and M(P) and B ere the universal uppar and
lower bounda in Z(M{P)) respectively. According to the reiation
2(p°) = M(P)\2Z(p), pec P we obtai:

(1) [2Z(p))¥= M(P)\ 2Z(p) = 2(p")  for each peP.
It can be easily seen that X satiq;ios all requirements impos-
ed on orthocomplementation.

(vi) If p,qeP, then p<q<=> Z(p)ec 2(q).

(a) Let p<q. The property (b)I of Lemma 1 implies 2(p) s
c z(q).

(b) Assume Z(p)c 2(q). If p = O, then clearly O = p<£q.
Also let p+0, and suppose that p4£q. Then we can select such
an M-base B that Be Z(p). Following Lemma 2 By = (B\<O0,q>)u
u<q”,1> 1s an M-base, and B, ¢ Z(p). Therefore B, e7(q), and
q’e By, qeB; which contradicts (b)II of Lemma 1.
Now define a map h:P—> Z(M(P)) setting h(p) = Z(p) for -ach
peP,

(vii) h is bijective. This follows immedistely from the
definition of h and by (vi).

(v1i1) The orthocomplemented posets (P,< ,0,1, °) and
(z(M(P)), c ,0,M(P) ,* ) are orthoisomorphic. The fact that h is

an orthoisomorphism is namely a consequence of (vi), (vii) and

(1).
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Repark. If for P1sPse P PV Py resp. P1A P, exists in
P, then the following equalities hold:

h(py Vv pp) = hipy)vhip,), hipy A p,) = h(p)An(p,.
But it is necessary to warn. The operations v and N in a poset
(z(M(P)), & ,6,M(P) ,* ) as long as they are defined may in gene-
ral differ from the uasual set-theoretical operations U and N .

Proposition 3 [1]l. Every zero-dimensional, completely re-
gular topological T)-spece X of the total character w(X) = =
can be embedded homeomorphically in the Cantor cube DT= TI_ B,
where Ds = {0,1}%, 8cS are endowed as topological spaces with
a discrete topology, and card S = T .

Proof: See [11.

Corollary. If (P,<,0,1, °) is an orthocomplemented poset
and if card P = ¢ , then the space (M(P), 7°) can be embedded
homeomorphically in D™ .

Proof: Clearly card Z(M(P)) =t . If U is a basis of
clopen sets in M(P) generated by Z(M(P)) as a subbasis of topo-
logy 7' , then card U= " . Therefore rfor the total character
w(M(P)) of M(P) we get W(M(P)) « © , Corollary follows now ap~-
plying Theorem 1 ard Proposition 3.

In a apociai case, when (P,<,0,1, *) is a Boolean algebra, and
$(P) the Stonean spaee of P, then the following assertion es-

tablishes the connection between the topological spaces < (P)
and M(P),

Propoaition 4. Let (P,é,q,l, ‘) be a Boolean algetra.
Then the Stonean space F(P) of P 4is a compact subspace of the
topological space M(P),
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Proof: Follows as a simple consequence of the fact tﬁat
the topology of the Stone space <(P) is induced by the topo-
logy of M(P).

Theorem 2. If the orthocomplemented posets (P, < _,0-1,11.')

(P, £,0,,1,,™*) are orthoisomorphic, then the corresponding to-
pological spaces (M(Py), 77), (M(P,, ) ere homeomorphic.

Proof: Let hiPy) —> P2 be an orthoisomorphism from Py on
Py. It 18 easy to show that B is an M-base in P, iff h(B) is en
M=base in P,. Therefore the mapping h induces a mapping %:I(Pl)—»
—> M(P,). The bijectivity of h implies bijectivity of . Now
if we denote by Zi(p), P€P; the elements of subbases Zi()l(Pi))
of topological spaces (M(P;), J"), 1 = 152, then the following
equality turns out to be valid:

(2) a7t (Zz(p)) = Zl(h.l(p)) Pe P,
Now, if F is an element of the basis for closed subsets of the
topologicsl space I(Pz), then there exists such pye Pyy J =
= 1,2,..0,n, that P =0 2,(p,). According to (2) we obtain
3 =172, 0) 26000 =0 8200 = T 7,0 ).
This implies that 3°1(F) 1s sn element of basis for closed sub-
sets in I(Pl), end hence the continuity of fi. The continuity

of ,!\1'1 can be shown analogically. The converse of the theorem
my fﬂil.

Example. Let be X =11,2,3,4%, P; = {Yecexp X|card Y ¢

¢ 11,31, 2 = {1,2,3,4,5,6,7,8} amd P, = {0,2,{1,2},{3,4},15,63,
Z\11,2%, 2\ 13,43, 2\ 15,63,

Define the partial ordering and the orthocomplement on Pi’ i=
= 1,2 as the inclusion relation and the set-theoretical comple-
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ment respectively. It can be easily shown thst (Pl,sz,ﬁ,x;j

end (P,,< ,6,2, ) are orthocomplemented posets. For -the  apa-
ces M(P,), M(P,) it may be found that cerd M(P,) = card H(P,)=
= 4, So we cen see that the spaces M(Pl), I(Pé) gre discrete

and homeomorphie. But the posets Pl' Pz cannot be orthoisomor-~
phic, because while PZ contuins three different mutually ortho-
gonal elements, Pl contains always only at most two mutuslly or-

thogonal elements.

References
[11 R. ENGELKING: Topologia ogolna, Warszawa 1976.

[2] O. FRINK: Ideals in partially ordered sets, Amer. Math.
Monthly 61(1954), 225-234.

{3] H. GRAVES ~ S.A. SELESNICK: An extension of the Stone re-
presentation for orthomodular lattices; Collog.
Math. 27(1973), 21-30.

£4] J. KLUKOWSKI: On the representation of Boolean orthomodu-
lar partially ordered sets, Demonstraiio Mathe-
matica 8(1975), 405-423.

[5) A.R. MARLOW: Quantum theory and Hilbert Space, Journal of
Math. Phys. 19(1978), 1-15.

{6] M.H., STONE: The theory of representation for Boolean al-
gebras, TAMS 40(1936), 37-111.

[7] N. ZIERLER - M, SCHLESINGER: Boolean Embeddings of ortho=
modnlar sets and Quantum logica, Duke Math. Jour-
nal 32(1965), 251.

Department of Mathematics, Institute of Chemical Technology,
Suchbétarova 1905, 166 28 Preha, Czechoslovakia

(Oblatum 14.10..1981)

- 498 -



		webmaster@dml.cz
	2012-04-28T08:21:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




