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SELF-DUAL SUBNORMAL OPERATORS
G. J. MURPHY

Abstract: A characterization of self-dual subnormal ope-
rators is given, and this characterization is shown to give
quick proofs that certain classes of operators consist of self-
dual subnormal operatorse.
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Recall that a sybnormgl operator is the restriction to an
invariant subspace of a normal operator (sll operators sre un-
derstood to be bounded linear operators defined on Hilbert spa-
ces). Every subnormal operator has a minimal normsl extension
N, and N is unique up to unitary equivalence 12]. Suppose then
S is a subnormal operator on 2 Hilbert space H and N is a nor-
mel operator on a Hilbert space K>H such that N is the mini-
msl normal extension of S. Then relative to the decompositicn

K = H@HJ' of K, N has operator matrix

-8 5.

Now if S is o pure subnormal operator (i.e. S has no nonzero
reducing subspace on which it is normal) then T is unique up
to unitary equivalence and is called the dual of S (see, for
example, [1)). S is said to be gelf-dual if S is unitarily
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equivalent to its dual T,

It is convenient to make the following definition - an ope-

rator S is pure if S has no non-zero reducing subspace on which

S is normol.

de now give a2 simple characterization of self-dual subnor-

mal operators which eliminates reference to the minimal normal

extension.

[X,Y] denotes the commutator XY - YX for operators X and Y.

Theorem 1. Let S be a pure operator on a Hilbert space H.
Then S is a self-dual subnormal operator if and only if there

exists a norrmal operator A on H such that
1S*,S) = AA* and AS = §¥4,

Proof: Suppose first that S is a self-dual subnormal ope-

rator and

N =(cs) }':'t)

is its minimal normal extension on H@&® H. Then for some unita-

ry operator U on H, T = USU¥ . But the equation NN* = N* K im-

(ss*wxx* x'r) (s*s s*x.)
T X% exp/ X¥S X¥X + TN

plies

Hence {S*%,S) = XX* , XT = S¥ X and [T*T] = X*X.
“le define A = XU. Then X = AU¥* , and AS = XUS(U*U) =

(XT)U = (S* X)U = S¥ 4, 1.e. AS = S¥ A, Also [S¥,S] = XX*=

AU*(AU*)* = aA® , Finally A is normal, because
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A = (XU)*XU
= PXARU
= UX[T* 71U
U (USUH *USU* - USUN(USU*) ¥)U
UX(US¥Su* - Uss*u¥)u
[s*,81
= AAX

Now to prove the converse, suppose we are given a normal
operator A such that [S*,S] = AA¥ and AS = S¥A, and we’'ll
show this implles S is a self-dual subnormal operator.

Put
ne(o o

Thus N is an operator on H® H, and some trivial matrix cal-

S*g ¥ )
N'N = (
A¥S A¥A+SS¥

culations show

SS*+AL* AS )
=(S*l* S*s

So from the relations [S*,S] = AA* and AS = S¥A we deduce that
NN* = N*N, i.e. N is normal. Thus the proof will be concluded
if we show N is the minimal normal extension of S.

Supposing it is not, we derive a contradiction:

(For notational convenience let K denote the space on
which N acts and regard H as a subspace of K, so that K =
=H® rt .)

Now as N is not the minimal normal extension there exists

a proper subspace M of K which reduceg N, and M contains H
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but is not equal to H. Thus Ny, the restriction of N to M, is
normal .

Now K =H@® H = (Ho M o) © ut= vout.
Thus relative to the decomposition K = H ® (M H) & Mt , X has

operator matrix

s % 0
N=]0 Xz 0
o o0 N,

and relative to the decomposition K = Mo ut , N has operator

N 0
(o)
0 N

2

matrix

Also since M is reducing for N, we must have Nl, N2 normal.
But we can also identify the operator matrix of N relative to
the decomposition K =H® (MO H) @ M~ as

S Xl (o}

(s%)

Hence identifying corresponding submatrices of the above 3 x 3

operator matrices we deduce that

s*=<x2 o)
0 N

2
relative to the decomposition (M@ H) ® M~*.
Thus S* = X, @ N, on the space (MO H) ® ML= HL, and hence
S = X’E @HS‘. This implies $§ is normal on the reducing subspace
Mt (since NZ is normael) and hence Ml =0 by the purity of S.
Thus M = K, a contradiction. a
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Corollary l. If S is a pure hyponormal operator and
l'.S"‘,S:lU2 S = S*[S*,Sll/z then S is a self-dual subnormal ope~

rator.
Proof: Take A = [S*,SJI/Z.

Corollary 2. If S is a pure isometry, S is a self-dual

subnormal operator.

Proof: S*S =1 implies [S*S)1 =1 - SS* is a projecti-
on, whence [$%,51/2 =1 - ss* . Thus [s*,$)/%s = (1 - ssMs =
=0 = $¥(1 - S$%) = $*[s*,51L/2, e result now follows by ap-
plying Corollary 1. O

Corollary 3. A pure quasinormal operator § is a self-dual

subnormal operator.

Proof: S has a commuting polar decomposition S = UlSl=
Islu*
also, so S*S - SS* = U¥|S|Uls| - Ulslu*Is| = \S\2(U*y - UUX) =
= 1s12(1 = WU®. Hence [$*,51%2 = IsI(1 - UUM.

= |S|U, and as S is pure U is an isometry. Now U*|S|

We conclude [S%,511/2 5 = |s|(s - UU*s) = ISI(S - UISI) =
= [S|(S - 8) =0, and s0 also S"‘l’_S"‘,S]]‘/2 =0, m|

Remarks. One could generalize Corollary 2 by stating that
if S is a pure operator, [S*,S] is a projection, and [S*,S]S =
= S*[S* S], then S is a self-dual subnormal operator.

The results in Corollaries 2 & 3 are not new, see [1] for
example.

The condition given in Corollary 1 is not a necessary con—-
dition on an arbitrary pure operator that S be a self-dusl sub~-

normal. In [1] it i- ehown that the unilateral weighted shift
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S with weights (1/4, 1,1,1,...) is a self-dual subnormal ope-
rator. But S does not satisfy the condition [S*,S]l/z S =

= s¥[s*,5]1/2, Thie 1s because S*S - SS* 4is the diagonal ope-
rator with diagonal sequence (1/4,3/4,0,0,...), and hence
[S*,S]l/2 is diagonal with sequence (1/2, %3,0,0,...)u Thus
[s*,s11% e = [s%,81%2 ¢ /4 = ‘/53-} o,+0 and $*[s*,51%% =
= 0 (here as usual ©51811805000 denote the orthonormal basis

for the Hilbert space). Hence [s*,511/2 ss*Is¥,s1V2,

We conclude with a new characterization of the pure hypo-

normal operators which are self-dual subnormal operators.

Theorem 2. Let S be a pure hyponormal operator on the
Hilbert space H. Then S is s self-dual subnormal cperator 1if
and only if there is a unitary operator U on H such that

ULs*,s1Y/2 s = s*s*,1/2 v
and ULS*,511/2 = [s%,511/2 y,

Proof: Suppose firstly that S is a self-dual subnormal.
Then by Theorem 1 there is a normal operator A on H such that
AS = S¥A and [S*,S] = AA* . Now we can polar decompose A =
= UlA = |AlU where U is a unitary.

Hence Aa* = |412 = [S*,S] implies 1A| =»[S*,SJI/2. Also
AS = S*A implies UIs*,$1V/2 s = s#1s%,s11/2 u,

Conversely if we suppose that a unitary operator U exists
for which UIS*,$1Y/2 s = s*[s*,511/2 U ana vls*,511/2 =
= [5%,51%2 U, ye simply put A = UIS¥,512/2 and find that
[S*,S] = AA*, As = S*A, and A is normal. Thus by Theorem 1, S

is a self-dual subnormal operator. O
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