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PERIODIC SCLUTIONS FOR NONLINEAR PROBLEMS WITH
STRONG RESONANCE AT INFINITY *)
A. CAPOZZI, A. SALVATORE

Abstract: In this paper we are looking for periodic so-
lutions of the equations - ¥ = VU(x,t). We suppose that the
problem is asymptotically linear and that C belongs to the
spectrum of linearized operator at infinity. We obtain multi-
plicity results. The proof of the theorem is based on a recent
abatract theorem, that has been proved for a functional that
satisfies a weaker condition than Palais-Smale condition.
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0. Introduction. The aim of this paper is to look ior
solutions x(t)e CZ(R,Rn) of the equations
[ =% = VU(x,t)
(c.1) { x(o) = x(T)
L x(o0) = x(T)
where T>o0 is a given period, U(x,t)ECZ(Rnx R,R), U(x,t) =
= Ulx,t+T) VxeR" VteR.
The problem (0.l1l) has been studied by many suthors under
different assumptions on the function U. We refer to Benci [2]

and Thews 15] for a rather complete bibliography. If the pro-
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blem is subquadratic (cf. [2]) multiplicity results for problem
(0.1) have been obtained in the non resonant case (i.e. if O
does not belong to the spectrum of linearized operator at infi-
nity). It is well known that the solutions of (0.1) are the
critical points of the functional of the action in a suitable
function space. In the non resonant case this functional satis-
fies the well known Palais-Smale condition. The interest of the
resonant case lies in the fact that the Palais-Smale condition
is not always satisfied. Recently some techniques have been de-
veloped for studying non linear problems, having a variational
strncfure, with a "strong resonance” at infinity (cf. [1]).
Our purpose is to use these techniques for solving the problem
(0.1).

We denote by U, (x,t) the Hessian matrix of U(x,t) with

respect to the space variables and we assume that there exists
lim U (x,t) = M(t) as \x| —> © ¥t elo,T]

where M(t) is an [nxn] symmetric matrix with elements continu-
ous in [o,Tl.
If we set
VU(x,t) = M(t)x - VV(x,t),

the problem (0.1) becomes
-% = M(t)x- UV(x,t)
(0.2) x(o) = x(T)
x(o0) = x(T).
We denote by . the self-adjoint realization in L%((o0,T),RD)

of the operator x —» =¥ = M(t)x with periodic conditions. We as-

sume that
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(1) Vv(o,t) =0 VteR, oeb(L)

(1,) V(x,t) —> 0 a8 |x|—» co uniformly in teR

(yv(x,t),x) —> 0 as |x] — co uniformly in teR,

We observe that if (I,),(I,) hold, the problem (0.2) has '
& "strong resonance” at infinity.

We denote by w(t) the smallest eigenvalue of V_ (o,t)
ard we also assume that

(13) “ 3[2?1;] «(t)> o,

(1) there exists A, e6(£L) A, <o s.t. A+ @ >o,

(I5) Vix,t) = V(-x,t) VxeR?, vteR.

We consider the operator x — =% - VU(x,t) linearized at
infinity and at origin and we set
Lox = =% = M(t)x
Lyx = =X - M(t)x + Vxx(o,t)x.
We denote by m,, (resp. mc) the maximal dimension of sub-
spaces where L, (resp. Lo) is negative semidefinite.

The following theorem holds:

Theorem Q.1. - If (Il),(IZ),(I3),(I‘),(15) hold, then
the problem (0.2) possesses at least m distinct pairs of non-
trivial solutions with

m=my, = m.

The proof of Theorem (0.1) is based on the abstract theo-

rem (2.4) in [1].

1. Notations and preliminaries. We set 12 = LZ((o,T) , R,

u! = #1((o,7),R®) and denote by
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Cmdy G40 gy (o0)

respectively the scalar product on Rn, L2, Hl.
We set H = fuel lulo) = u(T)} equipped with the scalar
product

(u,vly = (u,v)Hl.

If X is a real Banach space, we denote by X° its dual and
by {¢,+ ) the pairing between X* and X. In the sequel 'we shal..
use the unique symbol ll+ll for the norms in X end X'. If R>o0
we set By ={ueX| lull«R} and Sy = {ueX ! llull=Ri,

Ie 1’€Cl(X,R), we denote by £ (u) the Fréchet derivative
of £ at ue X,

We recall the following definition [11,I13), which is a we-~

aker version of the well-known Palais-Smale condition.

D tiop 1,1. - We shall say that fe Cl(X,R) satisfies
the condition (I) m:npcg,(-wé%gczé+w),if
(i) every bounded sequence {ydc £ cl,c2[), for
which {f(ukﬂ is bounded and f'(uk)—-—> 0, pos-
() sesses a convergent subsequence
(i1) V  cele,c,l 36 R, w>o0 s.t.le-6,c+6]1c
clep,cpl and Vuer Hle-6,c+61), lluli z R:
e il Hullz « «
We shall need the following abstract theorem for a real

functional £ on a real Hilbert space M ([1], th. 2.4).

Theorem 1l.,1. - Suppose that fe Cl(M,R) gsatisfies the fol-

lowing properties:
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£,) f satisfies condition (I) in Jo,* ool ;
f'z,) there exist two closed subspaces M+, M~ of M, with codim H"<
<+00 , and two constant ¢, >c,>f(o) such that
+
a) f(u)>c° VuespnM
b) f(u)<cm YueM

f3) £ is even.

Then, if dim M"Z codim M*, £ possecies at least m = dim M -
-codim v distinct pairs of critical points whose corresponding

critical values belong to [cg,c .

2. = Proof of the Theorem. Standard arguments in the cal-
culus of variations show that the classical solutions of (0.2)

correspond to the critical points of the functional

(2.1) £ =3 [Tlawl%at - [ ledult),ule))at +
+ j;TV(u(t),t)dt

defined on H. Clearly fe Cz(H,R) ard YueH

(2.2) <¢’(w,h> = f:\'ﬁ,ﬁ)dt - fDT (M(t)u,h)dt +

-
+ fo ( VV(u,t),h)dt VheH
T . T
(2.3) £"(wih,s] = [ (K,8)dt = [, (M(t)n,s)dt +
+ j: (Vg {u,t)h,s)dt  Vh,seH

We denote by B(t) the largest eigenvalue of M(t) and by
I, the identity matrix in R®, and we set

p= [g:.x_% plt) Ml(t) = M(t) + I.

Let a(u,v):Hx H—> R be the bilinear form defined by
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a(u,v) =foT[(ﬁ,6)+(u,v)]dt - j;T (M3 (t)u,v)dt +
+ (ﬁf:(u,v)dt.

It 1s easy to verify that a is continuous and coercive
(i.e. alu,u)> const llullg) on H. Then by the Lax-Milgram theo-
rem there exists a unique bounded linear operator S:H—> H with
a bounded linear inverse S » such that

(Su,v)y = alu,v) Vu,veH,

We set

D(S) ={ueH | Suel?;
and

I=S19c9)

¥ is a linear continuous self-adjoint operator with com-
pact resolvent. Then 6(¥ ) consists of a positively divergent
sequence of isolated eigenvalues with finite multiplicities. We
denote by 8, < 81"'”'<SJ<"" the eigenvalues of & and by
Apg< Ageceee < AJ<..... the eigenvalues of &£ .

Obviously £ =¢ - (1, where 1:L°—> I? is the identity
map, J\J =8y - A V;] and by (Il) it follows that there exists
k such that =g, 6(&),

We denote by M,j the sequence of eigenspaces corresponding
to the eigenvalues .7\0, ﬂl,..., JLJ,.... If mZo is an integer
number we set

H (m) =‘}?mlad
H*(m) = closure in H of the linear space spanned
by 'fMJ'i jzm

Clesrly H'(m)A H (m) = M_and H = H (mn) ® H™(m+1). For
. M
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every ueH, we set
" -
u=u *u +u,
where u'e HY(k+1), u e H (k-1), u e M .

Lempa 2.1. - There exist 7,7 ,» > o0 such that

(1) (Su,u"')LZ - pl u+l\i2 zql uﬂ\g YueH

(1) (Su,u) 5= AWz - laIf Voen

(111) Pl u-“iz - (s 5z 2 0 w2 Vuen

Proof. (1) (su,u™) , - pll u*nz = (su*,u+) 2"

[+ 2]
2 _ 2
- (Hlu"“Lz -j=;t£+1 (sj-(S) (lu'jllL %M 5 HuJ“ 22

z 1L(Su*,u+)L2 zqll uﬂlg

(1) (su) 5 - (sllu'nz = (su,u) ;= AT, =

oA
= ?éo (b) “u “ 2..(8 "{3) ou “d“ = - ’tuu-“iz =
- 't:“u-llfl

(i11) @l u-|\22 - (su,u”) i {&llu-'”i2 - (Su-,u")L2 =

- z of B-sy) llugl?, = = -@—-1 o5 Mgl 2 »(sa™00) , 2

zyu |l }2{.

Lempa 2,2, = If (Il),(I2) hold, thwe functional f(u) de-
fined by (2.1) satisfies the condition (I).
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Proof. The proof is substantially analogous to the proof
of Theorem (3.1) in [1]. It is only necessary to use the Lemma
2.1 and an obvious generalization of Lemma 3.2 in [1].

Legna 2.3. - Suppose that (I;),(I3),(I,) hold, then the-
re exist @ > o and % > o such that
£(u) z £(o) + VueH‘(h)nS§u .
Proof. We have YueH
(2.4) £(u) = £(0) + (£7(0),u> + £7(o) [u,ul + o(Muld).
By (2.2) and by (I,) we have VuecH
(2.5) (£"(0),u) = o.

By (2.3), (I3),(I,) we have Yu e B*(n)

" 2 T
£7(o) [u,ul (Sx,t,\x)L2 - (Hlu"Lz - fo (V (o, t)u,u)dt=

2 T
‘(Su-r'u-p)Lz)_ {3““*“1.2 + fo (Vo xloytlu,u)at>

™
>,, 85 g2, = ¢p-e0 Na12, =
2 2
= _}a(aa-ﬁ-féb) "uJﬂLZ.
There exist t>h and J > o such that

sy -+ w>day Vy>t,
then
s (5+«w
Zb(s -Rra) lluJ 2= Z’V( ) 8y "udlli2+
00
2 2

+'i=§+4 (ay=f+ @) l\ud“LZZconst »}g‘h’d “uJ“LZ +

%

2 oo
1 d"aJ ““J“L" Z const —}ghsd ““J“iZ'
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Then we have

(2.6) £"(o0) [u,ul z const hu’ﬂia.

Finally, by (2.4),(2.5),(2.6) we have

g(u)z £(o) *+ ¢ with 3 > o.

Lemps 2.4. - There exists o > o such that
£(u) < 0” VueH (X).

Proof. Let

A= V(u,t)
ook T

then YueH (k)
- - -2 T ’
£(u) = (Su ,u )I‘2 - plla IIL2 - j; V(u,t)dt) £
K
2
£.Z, (a5 p) "“3'1.2 + AT&AT.

Finally we can prove the Theorem (0.1).

Proof of Theorem O.l. By Lemma 2.2, Lemma 2.3, Lemma 2.4
and by (IS) we have that the functional f, defined by (2.1),
satisfies (tl),(fz),(f}) of the Theorem (1.l). Hence, the pro-
blem (0.2) possesses at least

m=dim (i ®.... ON)

distinct pairs of nontrivial solutions.
Obviously

-=.U- -D'

3. - A particula; cagse. We denote by M the self-adjoint
realization in L2 of the operator x —» =X with periodicity con-
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ditions, and we consider the particular case

M(t) = oLy I, o, = BET)2, k = o,1,......
o € 6(M) and the problem (0.2) becomes

—ii-eckx + VV(x,t) = o
(3.1) x(o) = x(T)
x(0) = x(T)

If we assume that

(14)' there exist oy £ oty Set. L= Ky + >0

we have that, if (Il),(Iz),(I3),(I4)',(IS) hold, then the pro-

blem (3.1) possesses at least
m = dim H (k) - codim H"(h)

distinct pairs of nontrivial solutions.

If we assume Xy = 0, we obtain the case studied by Thews
[5].
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