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GENERIC PROPERTIES OF VON KARMAN EQUATIONS
Pavol QUITTNER

Abstract: The operator équation f(w)= p connected with
general boundary velue problem for von Kérmén equations is
studied. It is proved that the singular sets B= {w; £'w) is
not surjective} and f(B) are nowhere dense and that for
every pé £(B) the number of elements of fr?p) is finite
and odd. Also a generic result for the globel structure of
the solution set of equation f(A,w)= p /where A is a bi-

furcation perameter/ is shown.

Key words: Fredholm map of index p, coercive, analytic,

proper, compact.

Classification: 35J65

1. NOTATION AND PRELIMINARIES

We restrict ourselves to consider the domain with infi-
nitely smooth boundery /see Definition 1/, but the main
results are aveilable under some assumptione also for &n
anguler domain whose boundary is piecewise of c3 /eee [11/.

We shell use the notation end assumptions from (4] so
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*hat we just recall them.

Denote the partial derivatives by L wy, the outward

ormal derivative by W, T Won + wyny, the tangential deri-
ative by Wy = -wxny+ wynx.

Denote further

Woexxx t 2wxxyy + wyyyy ’

[u,v] = UyVyy * YyyVax = Zquvxy .

Aw

The boundary operators M,T are defined by
- 2 2
Mw = YAw + (1—»)(wxxnx + 2wxynxny + wyyny)
- - - - 2- 2 -
™ o= -(aw), + (O v)(wxxnxny wxy(nx ny) wyynxny),‘.
where the Poisson constent v€<0,%) .
For u,v,® € W**(Q) we define

(u,v)wﬁg = l{(uxxvxx+ 2uxyvxy+ uyyvyy\ dxdy ,

1
"uno = ((uru)wg-‘l)z ’ .
(urv)v = (u’V)W%z + Vf[u,v]dxdy ’
Q.
B(v;u,f) = ji(ny“x*&+vxyuyv%'vxxuy?y'vyyux¢x) dxdy .
If (Pewf,‘z(.n_)' we obtain B(v;u,®) = B(v;fu) = B(¢;u,v) .

Definition 1. Let 2<E, be a simply connected bounded
domain. Let there exist & one-to-one mapping © of <0,R)
onto 242 defined by 6 : t*—>(hﬁ(t),ub(t))
with the properties

w; € C¥(Ko,R)), i=1,2,
wio) = lim W), i=1,2, x=0,1,2,...,
t-»R-
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(-wé(t), 0)1'(1.)), t €<0,R) is the unit vector of the
inner normel tc 202 .

Then we say that {2 is of the class C%,

Definition 2. Let d>0. Let the mapping
(x,y): <0,R)*x<K0,d> —> E,
be defined by x: (1,8)—> 0, (1)- s wj(t)
y: (t,8) > w,(t)+ sw;(t) .

Denote by [f24 the image of <0,RY*x(0,d) in this mepping.

Throughout the paper let

' Nec®, an=nRuholy , r =6(3~i) , 1i=1,2,3
where & is the mapping from Definition 1 &nd ¥ i¥1,2,3
are pairwise disjoint measurable subsets of <0,R).

By [4] there exists J,> 0 such that the mepping (x,y)
from Definition 2 is & one-to-one mepping of <0,R)x<0,d>

onto }Z—d-o. We shall suppose that
sxx(.'sy)2 + syy(sx)z - 2sxysxsy =0 on 3.
Let us denote by V the closure of the set
v ={uec™m); usu =0 on M3, wu=0 on M }

in the norm of W¥%(Q) .,

The functions k,m,r,¢,P specifying the boundery problem are
supposed to fulfil /with arbitrery reel numbers p>1, q>2/:

kzeLp(r‘z) ; Xk, 20 on 0,

k31eLp(r‘3) ;i ka®0 on I3,

k€L, () 5 ky® 0 on [3,

meLl(3) , my€ Lp("s) , rTzelny) , pPe Ly(2)

-1 1
b e w2 %), ¢ ewt2%00n),
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d=¢,=0 on I.
Then there exists a function FeCZ( I21) which satisfies the

conditions
F=0¢, , F = ¢, on 20
/esee [6]/.
Let us introduce the followimg bilinear forms:
a(w)p) = szwn'pn as + f(knwﬁf“f Ky, W, f)aS ,
i r
((w, ) = ("‘»‘P)v + a(w,p) .
We shall suppose
(1.1) wev , ((w,w) =0 = w=0 .,
Then |iwl| =((w,w))i is an equivalent norm to [[* [ly22 inV
/see [3]/.
Defimition 3. The eouple (w,P) € vxw?(q) is said to be
a wariational solution of the problem if
(1.2)  (w,9) = Blvsde) + [Praxdy + [(ro+ myp)as + [m,¢as
e [p ]

3
holds for each eV,

(1.3) (@2 = - B(wsw,¥)  holds for each YeWr*((),

(1.4) ¢=0¢,, ¢-=¢, on 91 in the sense of traces,

The sufficiently smooth veriational solution defined above

is the classical solution of the system of equations

2
AW = [",47] + P
A on {1
AP = -[w,w]
setisfying the boundary econditions
w=w =0 on [},

L
w=0, M+kw =m, on I3,
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wl

MW+ k= my Wb (Webm Wb )+ W = Ty on

¢=9,, ¢, = & on 20,

2. REFORMULATION OF THE PROBLEM

Let weW?>%(Q). Using the HBlder inequality amd the
continuous imbedding W2X)c w'(2) we obtain that

B,: ¥ B(w;w,Y) is a continuous limear functiomal on W;1Q)
so that by the Riesz theorem

(3 RWeWZH Q) (Y v ewiia)) (R(ﬂ.’ﬂwg.z = B(wyw,Y) .
Similarly

(3 Fewd™@ny vewd ) (F, ¥y = (F,Vyaz

B(w;R(w),¥) ,

(3! C(w)eV )V pe V) ((cw),¥))
B(w;F-F,¢)

(3t LW e VXY e V)  ((L(w),?)

(3t peVI(V ¥e V) ((p,9) = [Peaxay + [(ne+myp)as + [m¢ as,
Q G L

Now we can reformulate the conditions (1.3) and (1.4) as

(2.1) d=-RW+F-F .
Substituting from (2.1) into (1.2) we obtain the equation

(2.2) f(w) =p
where
£f: V— V: wi— £(W) = w + C(w) - L(w) .

The equation (2.2) is obviously equivelent to our problem.
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3. PROPERTIES OF OPERATOR f

Lemma 1. The operators C,L: V—V are compact.

Proof. Let {wn}cv be bounded. We shall prove that
{c(wh} and {L(w™} are relatively compact in V.

We may sssume w'—w in V, "2""’1 and w; —w, in W)
/since (w:}, {w;} are bounded in W'¥Q)/. Using the compact
imbeddings W*A@)c W'A) end W*N2)c LX) one can easily prove
Wy Wy, WpE Woo By the compact imbedding W*XQ2)cW'%a) eand

by the compactness of the operator W' > LYoe) iu— u/aﬂ

we have w?— w in W*0), Wy — WY — W in LXoq).
* %ha ” "ha * “ha” “ha
Thus HRCW™) = R(WII . = su IR ™) - RW) , V) | =
0 7 yewdia) i< B F
= sup |B(wP;wP,¥)- B(wiw,¥)| = sup |B(Y;wn,wn)- B(Ysw,w)| =

11N

2 2 nyd 2
sup [(2 1, IwSwR-w_w_| + 1Y, |Iw2) w2 [+ |Y, | (W) -w?|)axdy = O
,{ Xy' x'y xyl XX y y' Yy X X !

since e.g.

n <
Tyl Iwugw wol axay =

- n n n_, <
£ LIV | CWgL Wl + fwy ] [Wiowe]) axdy £
£ Y (Wl 19l + Sl ™ =wll e )

Similerly llc(w™ - c(w)ll = sup  J(C(w™) - Clw),¢)] =
eV, nei <

= sup |B(w"sR(W"),¥)- B(WiR(W),¥)| — O .

Finelly, fL(w™ = LWl = sup IB(Wn-W;F-g,‘f’)l £
PeV, NNE4

¢ sup |B(w"-w;F,¥)| + sup |B(w'-wiF,®)] .
Cleerly, sup !B(wnowgﬁ,‘f‘)! = sup IB(F;‘I",W“—W” — 0 .

'sing the integration by parts we get sup IB(w"-wsF, )| — O,
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Lemma 2. There exists a constant K such that for each

weV the following estimate holds

«con W) - [(Low W)l = = b - K .

Proof. There exists a function §feC®(fL) with the :

properties:
£=1
on 9 ,
§X= fy’ 0
IB(w;§F,w| < 3pm®  for each waV
/see (4], Lemma 5/. .

Using the Riesz theorem we get
(3 {Fews™@N(y ve Wera)  (fF,)yaa = (EF,)yae .
Since F-F = ¢F- §F , we have

((Cw) W) = [(L(w) ,w)| = B(wsR(W) ,w) - |B(w;§F-{F,w)| =

w

B(wyw,R(w)) = [B(w3fF,w)| - |B(wswiF)l =

v

WROOIS - Fuwit - [ROO U S UEFN, =

1 2 P 1 2 2
- Wt RGO (IR - 1EFN) 2 - siwl” = JIEFI; .
Corollery. The operator f is coercive.

Definition 4. Let X,Y be Benach spaces, A: X—>Y a conti-
nuous lineer mepping, f: X—Y a /nonlinear/ C1 mep.

The mapping A is seid to be a Fredholm mapping of index p
if Im A is e¢losed, dim Ker A<oco, codim Im A<oo and

= dim Ker A - codim Im A.‘

hel
1

The map f is seid to be a Fredholm map of index p if £(x)
is & linear Fredholm mepping of index p for each xe€ X.
The mep £ is seid to be proper if f (K) is compect

whenever Kc Y is compsact.
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Lemme 3. The operator f is & Fredholm map of index zero.

Proof. Let weV., Since L,C are compact anslytic operators,
their derivatives L'(w), ctw) heve to be compact mappings.
Thus £w)= Ia-Lw +Clw) is the compact perturbation of the

identity and hence it is a linear Fredholm mapping of index 0.

Lemma 4. The operator f is proper.

Proof. Let KcY be compact, let us choose a sequence
{w"}< £(X). Since f is coercive, {w?} is bounded. According
to Lemme 1 we may assume C(w?)—>p', L(w") —>p?. Further
{ftw"} <K so that we may sssume f(w")—» pe K. Thus
w? = £(W") -C(W?)+L(W")—> p - p'+ p? and hence £(K) is rela-

tively compact. Since f is continuous, f-1(K) is closed.

4, MODIFIED SMALE’S THEOREM

Let X,Y be real Banach spaces, U< X open, Ms U,
Let f: U—»Y be a C' map. We shall denote the restriction
of £ to M by f/M. Further denote
B(£/M)= {xe M; f'x) is not surjective},
O(£/M) = {ye Y; (Vxe Mnf X y)) £4x)is surjective} = Y-£(B(t/M)),
B(f) = B(£/U), O(f) = O(£/U) .
Then O(f/M,) 2 O(f/My) for M,cM, send ye O(f/¥) for

each y¢ f(M).

Theorem 1. Let X,Y be reel Banach spaces, U,,Uzgx open
subsets, U, Uye Let f:U,~»Y be s c* /resp. reel snalytic/
Fredholm mep- of index p=20, p<k. Let £ ¥K) be relatively

compect /in X/ whenever KcY is compect,
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Then the set © = O(f/ﬁ‘) is a dense open subset of Y and for
every yon the set 4‘."1(370)(\&| is a C¥ /resp. analytic/
manifold of dimension p. If p=0 the set f.‘(yo)n U, is
finite /for yoeu/.

Proof. We shell prove that the set O is dense and open
in Y; all remeining assertions follow from the implicit
function theorem. ‘

First we show that f is a closed mapping.

Let ZsU, be closed /in X/, let x €2, f&x)—>y.
Since {x } is relatively compact, we mey essume x —>Xx€Z.
Then f(x)=y, y€ £(Z). Consequently f(Z) is closed.

Since B(f/U1) is closed and f is a closed mapping, the set
@ is open.

Let us choose ye€Y. Then K = f-'(y)nU‘ is compact.
Let x€ K. By [2] /see the'proof of Theorem C.1.3./ there
exists a neighbourhood Ux of x such that the set O(f/Ux) is
dense. Let us choose W cU, a closed neighbourhood of x.
Then the set O(f/wx) is open /since B(f/wx) is closed and f
is @ closed mapping/ end dense /since O(£/W,)2 0(£/U,) /.
Further choose an open set Vx such that xe ch Wx. Since
Ke UV

xeK

x o there exists a finite set {x1,...,xn'}§1( such that

Ks\JV. . Let us denote G = \JV Since O(f/W
i=1 Xj i=1

1 % xy) "
i=1,...,n is dense and open and O (f/G) =2 !(l:\‘w(f/WXi) ,
the set @(£/G) is dense in Y.
One can eesily prove that there exists a neighbourhood U of y
such that ‘ffnf(U‘-G) = @. Then UNU(f/G)SO end hence the

set O is dense.
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Lemma 5. Let the assumptions of Theorem 1 be fulfilled.
Let U,=U,=X, p=0. Then card £ 4y) /i.e. the number of
elements of the set f’"(y)/ is consteant on every connected
component of O,

Proof. It is sufficient to prove that card f (y) is
a continuous function on O.

Choose y,€0; let f-‘(yo)={x1,...,xN}. By the implicit

function theorem there exists an open neighbourhood Oi of Xy

/i=1,...,N/ such that f£/0; is a diffeomorphism. Thus
cerd £ (y) is a lower semicontinuous function end it remeins
to show that it is also upper semicontinuous.
N

Let us suppose zn¢ iL.J-‘Oi , f(zn)—> Yo+ We may assume

N . .
z,—>z. But then f(2)=y,, z ¢ _LJ1Oi , which contradicts

1=

the construction of Oi'

5. THE STRUCTURE OF THE SOLUTION SET

Theorem 2. Let f:V-—»V be the mapping defined in Section 2.
Then U= O(f) is a dense open subset of V and card £ Xp) is
finite, odd and locelly constant for peQ .

Proof. ' According to Lemmas 3,4,5 and Theorem ! it remains

to prove that card f"p) is odd /for pe@/.
Let pgQ© . For @€ €0,1) we define operators

f(‘: Ve V: Wr>w +(u.(C-L)(w) .
By Lemma 2 there exists & constent K such that for every weV
end every (u.c <0,1> the following estimete holds
((I‘(«(w),w)) > ;Ilwltl'- [N
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a

Consequently, there existq:én open bounded set U in V such
that peU, f‘(p)g—U and pé¢ fé‘(aU) for every &.

By the homotopy invariance property of the Leray-Schauder
degree we have N

deg(f,U,p)= deg(f,,U,p)= deg(fo,U,p)= 1.
N -
Since deg(f,U,p) =§;i(wj) , Wwhere {w’,...,wN} = f1(p)

end i(wj)= 21 /j=1,...,N/, we get that N = card £ (p)

is an 0dd number,

Now let us consider /insteed of (1.4)/ the following

boundary conditions

(5.1 b=ad,, ¢,=20¢,
/A being a real number/.

The operetor f = £ connected with the boundsry
conditions (?.1) can be written in the form fﬂ= Id+ C“- Iﬂ s
where C2= C, 0= AL and C,L are operators connected with
the boundary conditions (1.4) .

Let us define the following operator

g: VXE,—>V: (w,i\)n—-»f"\(w) = w+ C(w)=- AL(w) .

Theorem 3.
() The set O = O(g/Vx{-M,M)») 1is dense end open for eny

MeE,. For every peQ, the cet gy n(Vx(N,M))  is
en anelytic relatively compact menifold of dimension 1.
(ii) U(g) is & residusl set. For esch peUlg) the set g X p) is
& 1-dimensiongl antlytic manifold @nd there exicts a
discrete cet D=D(p)cE1 such that the equetion f’(w = p
has only & finite number of soiutions for any A ¢ D.
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Proof,
(i) & is obviously & Fredholm map of index 1. By Lemma 2 we

have
((cPw) ,w) = 12 (W), W)l = - 1§IMI|"- Kq .
Thus for IAl€ M we obtain
Wc(w) ,w)) = ALY, wl = (Cw),w) = M1 ((Lew) ,wI =
= (M), w) = 1w Wt 2 - D™
lim m—)—h-)-xx X =r00 ,

it + co 1x|{
xg Vx <-M,M>

hence g/VX{-M,M» is coercive /i.e.

where (.,¢) is a scalar product in VXE, and \xl=(x,x)i /e
Now one can easily prove /analogously as in Lemme 4/ that
8/VX<(-M,M) is proper. Using Theorem ! with U = VX(M,M) ,
U,= Vx(-M-€,M+€) , €>0 we get our assertion.

(ii) 0v(8)= ﬁlﬂn , hence ((g) is a residusel set.

gip)= ‘g((vx(-n,n))ng“(p)) , hence g Yp) is 1-dimensional
analytic manifold. ‘

Let us consider the projection M: g Yp)—E,: W, ) — A,
1 is en enslytic mep, [ is proper. Using [9] for the meps
of the form [T°A /where A: E,— g~%p) is a locsl

description of the manifold g%(p)/ we get that the set

D = E,- (O(h) is discrete. Our assertion now follows from

the implicit function theorem.

Remerk 1. The problem g(w,A)= p is often studied in the
bifurcetion theory. Theorem 3 shows that for generic p there

is no bifurcation /cf. [7)/.-

Remark 2. Let us choose pOGV and define the operstor

h: VXE X E, —> V: (w,a,g)v—’g(W,lH(Apo .
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Analogously as in Theorem 3 we get that ()(h) is e residual
set, for each pe ((h) the set h'(p) is an enelytic menifold
of dimension 2 end K'(p)n(VxK) is compact if K< EXE, is
compact. Let us define the projection
M: v%p)— Ey: (WA ,m)— m,

Then the set E,-(O(T) is discrete end for each M€ o)
the set g"(p*-/lpo) is an analytic menifold of dimension 1.

Let p¢ ¢U(h). If there exists (ﬁe E' such that p+[ip°e o),
then we cen repeat our considerations and we get agein that

g"(p+(apo) is an analytic menifold for generic ks

6. THE SINGULAR SET B

Theorem 4. The set B = B(f) is nowhere dense.

Proof. Since () is nonempty and f is surjective, there

exists w0¢ B. Choose weV and define /for ae€ E,/
T(%) = L- C{w_+aetw-w)) .

Obviously

w +RW-w ) €B > 1 is en eigenvelue of T(%e).
T is en analytic mepping of E‘ into the set of compect lineer
meppings on V and 1 is not an eigenvelue of the operstor T(0).
By (5] /Theorem VII.1.9/ the set

{aeeE', 1 is en eigenvelue of T(ae)}

is discrete. Thus B is nowhere dense.

Corollery. The set £Y(£(B)) is nowhere dense.
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Proof. Choose w¢V and its open neighbourhood U,
Since B is nowhere dense, there exists veU-B. By the impli-
cit function theorem there exists an open neighbourhood ]
of v /UcU/ such thet £/0 is a diffeomorphism. Since
£(U) is open, there exists pe £(U)n0. Let ze€ f"(p)nﬁ .

Then z¢ f (f(B) end zeU.

Remark 3. If the operator (Id-L) is invertible then

Theorem 4 csn be proved in an elementary way:

We have £'(Aw) = Id- L+ A’C(w) ,

consequently

Awe B &= (IvA0) (Id-L)v + }\zc’(W)v =0
&= (IvA0) v + FEa-LV v = 0

-1
PN - ;i is an eigenvelue of (Id-L) C'(w) .

-1
Since (Id-L) C{w) is compact, the set {}\eE,; ;\weB} is

discrete.
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