Commentationes Mathematicae Universitatis Carolinae

Ludé€k Kucera
On the monoids of homomorphisms of semigroups with unity

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 2, 369--381

Persistent URL: http://dml.cz/dmlcz/106160

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/106160
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

ON THE MONOIDS OF HOMOMORPHISMS OF SEMIGROUPS
WITH UNITY

Ludék KUCERA

Abgtrgct: It is proved that

- any semigroup with unity and zero element is isomorph-
ic to a semigroup of endomorphisms of some monoid (i.e.
semigroup with unity),

- any small category with zero morphisms is isomorphie
to a small full subcategory of the category of monoids
and their homomorphisms,

- any concrete category with zero morphisms is isomorph-
ic to a full subcategory of the category of monoids
and their homomorphisms, provided the non-existence of
measurable cardinals is supposed.

Key words: Category theory, full embedding, homomorph-
isms of monoids, zero morphisms.

Classification: 18Bl%

The aim of the present paper is to characterize monoids
which can be represented as the monoids of homomorphism of
semigroups with unity.

Let M be a monoid of homomorphism of a semigroup S with the
unity element 1. M necessarily contains the unity and zero
elements corresponding to the identity mapping of S and to
the constant mapping to the element 1 of S. We are going to
show that there is no other restriction to monoids in ques-
tion. More generally, we prove that every concrete category
K with O-mérphiane is isomorphic to a full subcategory of the

category of monoids (semigroups with unity) and their homo-
- 369 -



morphisms, provided (M) there exists a cardinal number oc
such that every o« =additive two-valued measure is trivial.

In some cases (e.g. if K has a set of objects only or K
is a category of universal algebras of a given type and their
homomorphisms) the axiom (M) is not necessary, on the other
hand the existence of a full embedding (i.e. a full and faith-
ful functor) of e.g. the category of compact abelian groups
into the category of monoids would imply (M) [ 71,

The proof is based on the fact that every concrete cate-
gory K can be fully embedded into the category of oriented
graphs and compatible mappings [1l, 6] (see also [8]). Some
special cases of this theorem are proved in 13, 4, 5]. Using
this result we shall prove that a concrete category with O-
morphism can be fully embedded into a special subcategory of
the category of oriented graphs with one loop. (O-morphisme
will correspond to constant mapping to the loops.)

The category of one-loop graphs will be fully embedded
into the category of monoids by a modification of the method
used in the paper [2Z).

0. Prelipipary definitions. An orientéd graph is a coup-
le G - (X,R), where X is s set and Rc X=X. X (R, resp.)is cal-
led the underlying set (the relation, resp.) of G. A loop of
G is an element x ¢ X such that (x,x)e R. A mapping £:X — Y
is a compatible mapping from (X,R) into (Y,S) if (x,y)eR im-
plies (£(x),r(y)) € S. Note that a constant mapping to a loop
is compatible.

GRA is a category of all oriented graphs and their com—

patible mappings.
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GOL is a full subcategory of GRA determined by graphs
G = (X,R) such that G has exactly one loop Xq

(xo,x),(x,xo)eR implies x = x,
if x#x, and either (x,xo) eR or (xo,x)eR, then it is

(x,y)e R irr (y,x) e R,

GOL(I), where I is a set, 1s a category defined as fol-
lows:

objects are triples (X,(Ri)iel,xo), where X is a set,
Ryc X=X for all iel, X, € X, such that for every ieI it is
(x,x)eRi ire x = x,

morphisms from (X,(Ri),xo) into (Y,(Si),yo) are mappings
£:X—>Y such that for every ieI, (x,y)eR; implies (f£(x),

f(y))esi. (Note that in this case it is f(x ) = yo.)

A set TFI Xy is considered as the set of all mappings

ie
q from I into ;\Y/; X; such that gli)e X,

MON is the category of monoids (semigroups with unity)
and their homomorphisms. We shall say that a category K has
O-morphisms if for any two objects A, B of K there is a mor-
phism Z’A’B:A——-» B such that for every morphism f:A— B, g:
tB—> C it is ZB,C"f = g"ZA,B = ZA,C'

1. Embedding into GOL

Theorem 1l: If a category K has O-morphisms and if it can
be fully embedded into GRA then there exists a full embedding

of K into GOL (I) for some nonempty set I.

Proof: Without loss of generality we can suppose that K
is a full category of GRA and that there exists an object O
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of K such that Zo o is the identity morphism of 0. The object
’
0 is uniquely determined as an image of any O-morphism in K.

Denote an underlying set of an object (i.e. a graph) G

of K by Xy and its relation by Rg.
-1

Given x&X_, denote ZG’O(x) = xG,x’zo,G(X) =8 yo Ve have
XG'XHXG’y =@ for x+y, BG,xexG,x’ 8,x = % Xo,x =ix} Xg=
= ch,xc,x' If £:G — H is a morphism of K then f maps K'G’x
into xH’x and f(aG,x) = ay x

A full embedding F of K into GOL (Xou Ro)‘ can be defined
as follows:

FG) = (yI&o xG,x' (RG), ZO’G), where relations RG,i are
defined in the following way:

(q:9p) € RG,i for 1 =xeX,, q;(x) = ay¢x),

(ql,qz)aRG for 1 = (x,y)e R, (ql(x), qy(x)) € Ry »

F(e){q) = feq.

Ir (x,y)e R, then ('zo,G(X)"zo,G(y))GRG which implies
(zo,G’zo,G)‘RG,(x,y)‘ Conversely, if (q,q)eRG’(x,y) for e-
very (x,y)e R then q:X —> ¥; is a mapping such that (x,yle
€ R implies (q(x),q(y))eRG. Hence q:0—> G is a morphism of
Kend q =qel; = qeZ, o =32, g

Now, it is easy to see that F is a faithful faotor. We
shall prove that F is full:

Let h:F(G) —> F(H) be a compatible mepping of GOL(Xou Ro)
and ae€Xgy. There exists a unique xe X, such that aexG,x and
there 1s q exT‘TxD Xg,x such that q{x) = a. Put £(a) = (h(q))(x)~
This does not depend on the choice of q, because a exgxo xG,x’
ql(q) = a implies (qyq;)e BG,x’ (n(q),h(q;)e RH,x’ (h(g))(x) =

= (h{qy))(x). We have obtained a mapping f:X; — X such that
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h(q) = foq. Let us 8UPpose that (a,b)e Rg. There exist x,ye
€ Xo such that anG’x.beXG

¥ e

¥y and Qpry € TTxa xG,x such

that q(x) = a,qz(y) = b. We have (x,y) = (ZG,O(a),ZG’O(b))E

€R,, (ql’qz)ERG,(x,y)’ (nlq,), h(qzleRH,(x,y), (£(a),rlb))=
= (fql(x), fa,ly)) = (h(ql))(x), th{q,)(y)) € Ry, Thus, £:G—>H

is a morphism of K and F(f) = h.

Theorem 2. If K is a category with O-morphisms and if
there exists a full embedding of K into GRA then there exists:
a full embedding of X into GOL.

Proof: In view of Theorem 1 it suffices to construct a
full embedding GOL (I) —> GOL for every set I. For the sake of
simplicity we shall divide the construction into two parts:

1. A full embedding GOL (I)—> GOL (3)

According to [9], there exists an oriented graph T = (I,U)
which has the parameter set I as an underlying set such that
the only compatible mapping of I into itself is the identity
mapping.

Define F as follows:

FU(X,(Ry) g 7ax) = (((X = fx3)x I) Udx t, (¢
where (a,b)er,; iff

1’1:0,1,2 1%g) s

either 1 =0, a = (x,P), b = (x,y)»

or i=1, a=(x,p, b=(x,q9),(p,q)e U,
or 1i=2,a=(x,p), b= (y,p),(x,y)e Rp-,
or i=2,a=(x,pP,>b =xo,(x,yo)e Rp»
or i=2,a=x,0b= (y,p),(xo,x)e Rp"
or i=0,1,2, a=b=x

o!
for some x,ye X - 4 xo}, P,qel,

- 373 -



(£(x),1) if £(x) is not a loop
R ((x,1)) = < ' ’
N #lx) ir £(x) is a loop,
F(f)(xo) = f(xo).

It is easy to see that F is a faithful functor. Let h:
:F((X,(Ry) ,xo))——> F((Y,(Si)l,yo)) be a compatible mapping. We
have h(xo) = Yo Ty is an equivalence with the equivalence
classes {xlelI, xeX, xX+X, and‘-ixoi; similarly for 8. The
mapping h preserves these partitions. According to the defi-
nition of ry,s; and the properties of T = (I,U), there exists
a mapping f£:X—> Y such that
n((x,1)) = - (£(x),1) 1 £(x) %y,
~ Yo i £lx) =y,
h(xo) =¥,

In view of the definition of T8, and the properties of
the mapping £ we know that (x,y)e Rp implies (£(x),f(y)) e Sp.

Therefore f:(x,(Ri),xo)-—-> (Y(Si),yo) is a morphism of
GOL (I) such that F(f) = h.

A full embedding GOL (3) —> GOL

F((X,(vy) 1 = 0,1,2,x )= (((X = §x }}=11,2,3,4}=11,2,3,43)0
vixgd,R), where (a,b)e R if there exist x,y€X - {x,} such
that either a = (x,i,p),b = (x,J,p),p = 1,3 and

either i =1, j=2,

or i=2, 3=3, 1

or 1i=3,3=1, /\

or 1=2,]=4, 3 =—— 2

or 1=4,3=3, \/
4
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or a = (x,i,p),b = (x,1,9), 1 =1,2,3,4 and
either p=1l,3,q=p+1,

or p=24,4q=p-1,
or a = (x,1,1), b = (x,1,3),
or a = (x,i +2,2), b =(y,1 + 3,4), (x,y)e r, 1=D0,1,2,
or a = (x,1 +2,2), b =xg, (x,xo)e ry 1=0,1,2,
or a=x, b= (y,1+ 2,4 (x,y)er, 1=0,1,2,
ora=b=x_.

(r(x),i,p) if £(x) is not a leop
Flo) ((x,1,p)) = " ’

™S p(x) 17 £(x) is a leep,
F(£) (xo) = f(xo).

It is easy to see that F 1s a faithful functor from
GoL (3) .into GOL. We shall prove that F is rfull:

Let h:F((X,(ri),xo))——> F((Y,(Si),qo)) be a compatible
mapping, )
Given x€ X, p = 1,3, the points (x,1,p), (x,2,p), (x,3,p)
form a cycle and therefore there is ysY, q = 1,3, u =0,1,2
such that either

h((x,i,p)) =y, for 1 =1,2,3,
or 1((x,1,p)) =/(y,i +u,q) if i + us3, .

N(y,i +u=-3,x) if 1 +u>3 for 1 1,2,3.

Considering the arrows ((x,2,p),(x,4,p)) and ((x,4,p),
{x,3,p)), we can show that

h((x,1,p)) =y, for i =1,2,3,4 in the first case,

h((x,i,p)) = (y,i,q) for i =1,2,3,4 in the second case.

In view of the existence of an arrow ((x,1,1),(x,1,3)) there
is yeY such that h((x,i,p)) = (y,i,p) for 1 =1,2,3,4, p =
= 1,3. Since we have ((x,i,p),(x,i,p + 1)), ((x,i,p + 1),

375 -



(x,i,p))eR for 1 =1,2,3,4, p = 1,3, necessarily h((x,i,q))=
= (y,i,q), for 1 = 1,2,3,4, q = 2,4,
Therefore there is a mapping £:X —> ¥ such that

P (£(x),1,0) 1f £(x)*¥,;

h((x,i,p)) =
TrhaP ~N Yo if £(x) = Ior

h(xo) = Yo
Now, it can be easily seen that £ 1s a compatible mapping
from (X,(ri),xo) into (Y,(si),yo), and that h = F(f).

2. E dd « The next three theorems consti-

tute the main results of the paper:

Theorem 3. Assuming (M), a category K is isomorphic to
a full subcategory of the category of monoids and their homo-
morphisms if and only if it is a concrete category with O-mor-

phisms.

Theorem 4. If K is either a small category or a catego-
ry of universal algebras of a given type and their homomorph-
isms then X is isomorphic to a full subcategory of the cate~
gory of monoids and their homomorphisms if and only if K has

O-morphisms.

Theorem 5. BEvery multiplicative semigroup with the unity
and zero elements is isomorphic to a semigroup of endomorph-—

isms of some monoid.

Proof of Theorems 3 - 5. The theorem 5 is an immediate
consequence of the theorem 4. The "only if" part of the theo-
rems 3, 4 follows from the fact that any full subcategory of

MON is a concrete category with O-morphisms.
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Now, we are going to prove the "if" part of Theorems 3,
4. It follows from the assumption cf the theorems and from
[3, 4, 6] (see also [ 8]) that K can be fully embedded into
GRA.

Since K has O~morphisms, the theorem 2 gives a full em~
bedding K —> GOL. Therefore it is sufficient to construct a
full embedding of GOL into MON. It can be defined as follows.

Given a graph G = (X,R), which is an object of GOL, let
M’(G) be a free monoid over X =X -ix.}, where x, is the
loop of G, i.e. M (G) be a set of all finite (possibly emp—
ty ) sequences of elements of X,’ the composition in M (@) is
given by concatenation and the unity is the empty sequence.

Let = ©be the smallest congruence on M“(G) such that

(1a) x 22 y x2 zZ =X zz yz x2 z whenever X,y,z ex’ and
(x,y),(y,2) e R (note that it is x%y and z#x),

(1v) x yx°=x y2 %%, whenever x,ye X~ and (x,y),

(y,xo)e R (note that x+y),

(1) 22 y z= 22 y° z whenever y,zeX’, and (x,y),

(y,2) e R (note that y*2z).
Put F(G) =M (G)/ = .

A) Tt is evident that xPs x9 for xe X', p+q (especially
x# 1) and that x,ye X', x =y implies x = Yo

B) Let a = x;....X, be a word over X’. Define Cla) to be
the number of indices i = 1,2,...,k-1 such that X;$ Xy, It
is easy to see that a= b implies C(a) = C(b). Moreover,

Cla b ¢)< C(a b° ¢) and the equality holds iff b = xk, xeX’,
with a nonnegative integer k. Especially, if a c2 b az e =
2b282

= ac cthenb=xk,xex', kzo0.
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€) Let u,v,weX’, p,q,r be natural numbers and ome of
the following equalities hold:

(2a) wPWTvRPy = PP T R %Py )

(2b) uPvIu?P = Py2q,2P,

(2e) Wy = WTyE%F -

We have to transform the right side of (2) by subsequent
applications of the equations (1 a,b,c) into the left sideh
># (2). During the application of (1) which changes the expo-
nent of v for the first time necessarily v = y, 2q <2, which
implies q = 1.

D} Suppose that u,v,wcX’ and one of the following equ-

alities holds:

(3a) uwfy vlw=u wzvzuavr,

(3b) uvu’= uvzuz,

(3e) vAv w = wivlw.

We have to transform the left hand side of (3) into its
right hand side by means of the equations (1 a,b,c). (1 b) is
the only equation which can be applied to (3 b). Thus, u = x,
v =y and hence (u,v),(v,x )€ R. Similarly in the case (3 c)
we have (xo,v)(v,w)s R. Ir (1 q) is applied to (3 a) thenu x,
v=y, w=2z and (u,v),(v,weR, '

Ir (1 b) is applied to the left hand side of (3 a), then
either u = v4w, u vnzv uzw =u vznaw, which could be e-~
quivalent to u w wdw 1 (u,w),(w,xo)e R, but no other word is
equivalent to u wzv uzw which is a contradiction, or u = w =
=x, v=y, (u,v),(v,xo)s R and according to the properties
of G we have (v,w) = (v,u)e R,
Analogously, if (1 ¢) is applied to (3 a) then u = w = g,
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v =y, (x,v},(v,w) e R which implies (u,v) = (w,v)cR.

We have proved that

(3 a) implies (u,v){v,w) eR,

(3 b) implies (u,v),(v,x )eR,

(3 ¢) implies (x ,v),(v,w) eR.
F can be defined equivalently as a factorization of a free
monoid M(G) over X by the smallest equivalence ~ defined by

(4a) x zzxzzrvxzzyzxaz whenever x,y,zeX, (x,y) (y,z)e
<R,

(4b) xo~ 1.

We can reformulate the above results as follows:

") given x,ye X, x~ y implies x = y,
B’) given words a,b,c over X, a c2b a2¢c ~ aciblaie im-
plies that there exists x<¢ X and a natural number p such that

b= xp,
¢’) glven u,weX, veX’, p,q,r natural, uPw?Tviu?Py’ ~
WP T2 %2Py" | then q = 1,

D’) given u,weX, veX’, u wlv uw ~ u woveulw, then
(u,v),(v,meR.

A compatible mapping £:G —> H can be uniquely extended
to a homomorphism from M(G) into M(H). The extended homomor-
phism preserves congruence and therefore gives rise to a ho-
momorphism F(f£):F(G) — F(H). It is easy to see that F is a
functor from GPL into MON. F is faithful in view of A’.

To prove that F is full, let us consider a homomorphism
h:F(G) —> F(H).

Given y X, there are x,z X such that (x,y),(y,z)e R, which
implies h(x)(h(2))2 h(y)(n(x))? h(z) ~ n(x)(h(2))? (n(y))2
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(h(x))2 h(z). In view of 8%, there exists ve X and a natu-
ral number q such that h(y) = v2. Similarly, we can show that
there exists u,ve X and natural numbers p, r such that b(x) =

= uP, h(y) = vF. Thus it is either v = y_ and h(y) =yg"’yo’

)
or v*yo and q = 1.

Therefore there exists a mapping f:X — Y such that
h(x) ~ £(x) for xeX.
Given (a,b)e R, then either £(a) = £(b) = ¥, and £(g),r(b)) e
€ S, or there are u,v,we X such that (u,v),(v,w) € R and either
u=oe, v=">b, fiblky, orv=a, w=0>, fla)+y . Because
u vzv u2w~ u wzvzuzw, we have
2w (£(w))2 £(v) (£(u))? £(w) ~ £6u) (£(w))2(2(v) 32 (£(u) WPriw)
and it follows from D~ that (£(a),r(b))eS. Thus, £:6 —H is

a morphism and h = F(f).
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