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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

A NOTE ON THE JOINT SPECTRUM IN COMMUTATIVE
BANACH ALGEBRAS

Viadimir MULLER

Abgtrgct: We characterize the part of the joint spectrum
in s commutative Banach algebra which 1s always contained in
the joint approximative spectrum.

K ds: Banach algebras, Jjoint spectrum, joint appro-
ximatIve spec%rum. ’ ’

Classification: 46J20

Let A be a commutative Banach algebra with unit, Xyyeee
eseyXp€ A a finite family of elements of A. As usual, the joint
spectrum of X)peeesXy is defined by

6(:1,.-.,xn) ={[’x\l(u),¢..,ﬁn(M)J G(In, Me¢ m(A)}

where %71(A) is the maximal ideal space of A and & is the Gel-
fand transform of x e A. It is easy to see that (A,,..., A )€
€ 6’(xl,...,xn) if and only if there exists a proper ideal in
& containing x; - Ay (i=1,...,n). As in [1] we define the
Joint approximative spectrum of Xjjeee Xy by T(Xjyeee,x ) =
= 4( Adrecey ﬁn): C ™, there exists a sequence {bk‘sfﬂc A
such that hl}’mm E{‘bk(xi- Z.i)) = 0}s Obviocusly w(Xpje-. ,xn) c
C 6(xyye0eyXp)e

For n=1, it is well known that the topological boundary
of the spectrum is always contained in the approximative spec-
trum, 96(x;) c ©(x;). For nZ2, this is no longer true. The
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simplest example is the algebra B of all functions holomorph-
ic in the open bidise D= 1(2;, A,)c €2, Ia;l<1, 14,l<1}
and continuous on the boundary. If we take x,,X,€ B, xl(tl'tz)=
=1, xz(tl,tz) = t, then it is easy to see that &(x;,x, ) =
={(A, A e €2, 1121, 12,1213, 96(x),x,) =

= {(A1,2,)€C 2, either 12;)=1 or 1A,l=1} but

T (x1,%,) = £(A;, A,) € €3, [A))=1 and 1A,]=13.

In thls paper we give an answer to a natural question
which part of the joint spectrum is always contained in the
Joint approximative spectrum. This question was investigated
already in [3]. The present result, however, differs from that
of [3] in two points: 1) the proof is different, 2) in [3] it
is explicitly stated only that the joint approximative spect-
rum is always non-empty (it is possible, however, to obtain
in the same way the result which we present here).

The proof of Theorem 1 is based on the result of [2] (in
an equivalent formulation): Let Xpseee )X €4, (.Al,..., A)é
¢ 'rﬁ(xl,...,xn). Then there exists a commutative superalgebra
BoA such that (2,,..., ﬂn)¢ 65("1""":1) i.e.

'L'A(xl,...,xn) =BQA6’B(x1,...,xn).

Let K be a non-empty compact subset of € R, Denote ‘A'.k
the norm closure of the algebra of all functions holomorphic
in some neighbourhood of the set K with the norm \fi= @f‘ép\g\f(é‘)\
(we identify two functions whenever they coincide on K). Then
the Shilov boundary (%)) of the function algebra ’KK may be
identified with a subset of K, T (K )cK c (K (see e.g.
[4]) and for any n~-tuple (ﬁl,...,ﬂvn)e r (K’K)CK and any
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neighbourhood U of ( A;,..., A ) in K there exists a function
n
f e Ay satisfying ,,?‘?u‘f((“')bjgﬁ.ulf((“ .

Theorem 1: Let B be a commutative Banach algebra with
unit, xj,e..,X,€B, GB(xl,...,xn) =KcC". Then
't:(xl,...,xn) oI ('KK).

Proof. Suppose on the contrary (7\1,... ’ .’kn) el (Tx)c K
and (Ay,..., ln) ¢ 'I:B(xl,...,xn). By [2] there exists a commu-
tative superalgebra CoB.such that (A,,..., A,) & e‘c(xl,...,xn).
As the joint spectrum is a compact set there exists a neighbour-
hood U of (A5,..0, A,) such that UN €4(x),.00,x,) = @. Since
(Apseeey A e F‘('KK) there exists a function Feldy satisryng
sup, 1F(w) >“s‘u1?(_ul'f"(¢c)l . So we can find also a function £ ho-
lomorphic in some neighbourhood of K sueh that ngblf((u.)l >

«
>“seu£u\f((u,)\ .

Consider the element y = f(xl,...,xn)e Bc G, By the spee-

tral mapping theorem (see e.g. [4]) we have for the spettral

radii of y in the Benach algebras B and C

= = !
B % Bl s el = IRt e el

(@l,...,yn)\ =

. z
up ko' E s eees &n)! (275 ﬁﬁliec(x,,.lﬁ,g

> s

((gree ey,
= rc(y).
So we have rB\y)>rc(y), a contradiction with the fact that the

spectral radius does not depend on the considered algebra,
1

= - k, "k

rB(y) = rc(y) -hliu‘lw\y l .

Corollary: Let XypesesXy be elements of a subalgebra A

of a commutative Banach algebra B. Then
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GA(xl,...,xn) = %B(xl,...,xn) where %(xl,...,xn) denotes

the polynomially convex hull of the Jjoint spectrum.

Proof: We have w,(x;,...,x )c Tglxy,e-0,xy)

c 6B(x1,...,xn) C 6,(xyy+04%,) and the polynomially convex

hulls of «,(x;,e..,X,) and G‘A(xl,...,xn) coincide by Theo-

renm 1.

Remark: For n=1, F‘('KK) = 0 K. So the well-known inclusion

96 (x;) c ¥(x;) follows from Theorem 1.

1)

(2]

3]

[4)
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