Commentationes Mathematicae Universitatis Carolinae

Giordano Gallina
On a class of Moufang loops

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 2, 319--324

Persistent URL: http://dml.cz/dmlcz/106154

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,2 (1982)

ON A CLASS OF MOUFANG LOOPS Giordano GALLINA

Abstract: Multiplication groups of Moufang loops derived from antiassociative rings are studied.

Key words: Moufang loop, multiplication group.

Classification: 20N05

In [1], a class of Moufang loops is constructed. In the present note, several properties of these loops are investigated. A special attention is paid to the corresponding multiplication groups.

- 1. Preliminaries. Throughout this paper, let R be a ring (possibly non-associative) such that $x^2 = 0 = x \cdot xy$ for all x, $y \in \mathbb{R}$.
- 1.1. Lemma. (i) xy = -yx and $x \cdot yz = -xy \cdot z$ for all $x, y, z \in \mathbb{R}$.
- (ii) $xy \cdot uv = x(y \cdot uv) = x(yu \cdot v) = -xy \cdot uv = (xy \cdot u)v = (x \cdot yu)v$ for all $x, y, u, v \in \mathbb{R}$.
- Proof. (i) We have $(x + y)^2 = 0$, and hence xy = -yx. Moreover, (x + y)((x + y)z) = 0, $x \cdot yz = -y \cdot xz$. From this, $x \cdot yz = -x \cdot zy = z \cdot xy = -xy \cdot z$.
 - (ii) This is an easy consequence of (i).

Put $R^2 = \{xy; x, y \in R\}$, $R^3 = \{x \cdot yz; x, y, z \in R\}$ and $R^4 = \{xy \cdot uv; x, y, u, v \in R\}$. Then $R^4 \subseteq R^3 \subseteq R^2$ and, according to 1.1, $R^3 = \{xy \cdot z; x, y, z \in R\}$, $R^4 = \{x(y \cdot uv)\} = \{x(yu \cdot v)\} = \{(xy \cdot u)v\} = \{(xy \cdot u)v\}$ and $2R^4 = 0$. Further, let $I = \{a \in R; 2a \cdot xy = 0 \text{ for all } x, y \in R\}$ and $K = \{a \in R; 2ax = 0 \text{ for every } x \in R\}$. Then both I and K are ideals of R, $K \subseteq I$, $R^3 \subseteq K$ and $R^2 \subseteq I$.

Now, we shall define a new binary operation \circ on R by $x \circ y = x + y + xy$ for all $x, y \in R$.

1.2. <u>Proposition</u>. $R(\circ)$ is a Moufang loop, the nucleus $N(R(\circ))$ of $R(\circ)$ is equal to I and the centre $C(R(\circ))$ of $R(\circ)$ is equal to K.

Proof. All the assertions can be checked easily.

1.3. Lemma. $x^{-1} = -x$, $x \circ (y \circ z) = x + y + z + xy + xz + yz + x \cdot yz$ and $(x \circ y) \circ z = x + y + z + xy + xz + yz + xy \cdot z$ for all $x, y, z \in \mathbb{R}$.

Proof. Obvious.

1.4. <u>Proposition</u>. $R(\circ)/C(R(\circ))$ is a group. In particular, $R(\circ)$ is associateally nilpotent of class at most 2.

Proof. Let $x,y,z \in R$ and $a = x \circ (y \circ z)$, $b = (x \circ y) \circ z$. By 1.1 and 1.3, $a \circ b^{-1} = 3x \cdot yz \in R^3 \subseteq K = C(R(\circ))$.

Consequently, $R(\circ)/C(R(\circ))$ is a group.

1.5. Proposition. R(o)/N(R(o)) is an abelian group.

Proof. By 1.4, the factorloop is a group. On the other hand, $(x \circ y) \circ (y \circ x)^{-1} = 2xy \in I = N(R(\circ))$ for all $x, y \in R$.

1.6. <u>Proposition</u>. The second centre $C_2(R(\circ))$ of $R(\circ)$ is equal to the set of all $a \in R$ such that $4a \cdot xy = 0$ for all $x, y \in R$. In particular, $N(R(\circ)) \subseteq C_2(R(\circ))$ and $R(\circ)$ is cent-

rally nilpotent of class at most 3.

Proof. $a \in C_2(\mathbb{R}(\circ))$ iff $(a \circ x) \circ (x \circ a)^{-1} \in C(\mathbb{R}(\circ))$ for every $x \in \mathbb{R}$ and the rest is clear (use 1.4 and 1.5).

1.7. Proposition. $R(\circ)$ is a group iff $2R^3 = 0$.

Proof. Apply 1.2.

For every $a \in R$, define three permutations L_a , R_a and V_a of R by $L_a(x) = a \circ x$, $R_a(x) = x \circ a$ and $V_a = R_a^{-1} L_a$. Further, put $S_{a,b} = L_b^{-1} L_a^{-1} L_{a \circ b}^{-1}$ and $T_{a,b} = R_a^{-1} R_b^{-1} R_{a \circ b}$ for $a,b \in R$. Clearly, all these permutations belong to the multiplication group $M(R(\circ))$ of the loop $R(\circ)$.

1.8. Proposition. For all a,b \in R, the permutations $S_{a,b}$ and $T_{a,b}$ are automorphisms of R(\circ).

Proof. We have $S_{a,b}(x)=x-2a\cdot bx$ for every $x\in R$ and it is easy to verify that $S_{a,b}$ is an automorphism of $R(\circ)$. Similarly for $T_{a,b}$.

1.9. <u>Proposition</u>. Let $a \in \mathbb{R}$. Then V_a is an automorphism of $\mathbb{R}(\circ)$ iff $6a \cdot xy = 0$ for all $x, y \in \mathbb{R}$.

Proof. We have $V_{R}(x) = x + 2ax$ and the rest is clear.

1.10. Proposition. The loop R(\circ) is an A-loop if $6R^3 = 0$.

Proof. An A-loop is a loop such that every of its inner permutations is an automorphism. Now, the statement is clear from 1.8, 1.9 and from the well known fact that the inner mapping group is generated by the permutations $S_{a,b}$, $T_{a,b}$ and V_a .

2. The multiplication group $W(R(\circ))$. Let $n \ge 1$ be an integer, $I_n = \{1,2,\ldots,n\}$ and let f be a mapping of I_n into the set $T = \{L_a,R_a;a\in R\}$. We have $f(i)\in \{L_{a_4},R_{a_4}\}$ and put

Further. let us designate p(f) = f(n)f(n-1) ...

Further, let us designate
$$p(f) = f(h)f(h - 1)$$
 ...
... $f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_m} a_i, g_2(f) = \sum_{i \in I_m} a_i$

...
$$f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_m} a_i, g_2(f) =$$

= $\sum_{i \in A} \sum_{j \in I_m} a_i a_j - \sum_{i \in B} \sum_{j \in I_m} a_i a_j, g_3(f) =$

$$= \sum_{i \in A} \sum_{j \in I_m} a_i a_j - \sum_{i \in B} \sum_{j \in I_m} a_i a_j, g_3(f) =$$

$$= \sum_{\substack{i \in A \\ j \in I_m}} \sum_{a_1 a_j - i \in B} \sum_{\substack{j \in I_m \\ j \in I_m}} a_1 a_j, g_3(f) =$$

$$= \sum_{\substack{i \in A \\ j \in A}} \sum_{\substack{k \in I_m \\ k \in I_m}} a_1 (a_j a_k) - \sum_{\substack{i \in A \\ j \in B}} \sum_{\substack{k \in I_m \\ k \in I_m}} a_1 (a_j a_k) +$$

+ $i \in B$ $\sum_{k \in I_m} a_1(a_j a_k) - i \in B$ $\sum_{k \in I_m} a_1(a_j a_k)$ and

= x for every $x \in R$, where $h(f) = \sum_{i \in R} a_i - \sum_{i \in R} a_i$

 $f^{(m)}(1) = f(1), f^{(m)}(2) = f(2), ..., f^{(m)}(n) = f(n), ...,$ $f^{(m)}(n(m-1)+1) = f(1), f^{(m)}(n(m-1)+2) = f(2),...$

= mb_{i,m}, where b_{i,m} is a sum of products of the elements

2.3. Lemma. For every $m \ge 1$, $h(f^{(m)}) = mh(f)$.

2.1. <u>Lemma</u>. $p(f)(x) = (h(f) + \sum_{i=2}^{m} g_{i}(f))x + \sum_{i=4}^{m} g_{i}(f) +$

Proof. Some tedious calculations and induction on n. Now, let m≥1. Define a mapping f m of Imp into T by

2.2. Lemma. For every $m \ge 1$ and every $i \in I_n$, $g_i(f^{(m)}) =$

Proof. The proof is purely of technical character, and

Proof. By induction on m. The assertion is obvious for - 322 -

$$= \sum_{\substack{i \in A \\ j \in I_m}} \sum_{\substack{a_1 a_1 \\ j < i}} a_1 a_j - \sum_{\substack{i \in B \\ j \in I_m}} \sum_{\substack{a_1 a_1 \\ j < i}} a_1 a_j, g_3(f) =$$

...
$$f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_n} a_i, g_2(f) = \sum_{i \in A} \sum_{j \in I_n} a_i a_j - \sum_{i \in B} \sum_{j \in I_n} a_i a_j, g_3(f) = \sum_{i \in A} \sum_{j \in I_n} a_i a_j - \sum_{i \in B} \sum_{j \in I_n} a_i a_j$$

...
$$f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_n} a_i, g_2(f) =$$

= $\sum_{i \in I_n} \sum_{j \in I_n} a_j a_j, g_3(f) =$

...
$$f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_m} a_i, g_2(f) = \sum_{i \in I_m} a_i = \sum_{i \in I_m} a_i$$

Further, let us designate
$$p(f) = f(n)f(n-1)$$
 ...

$$f(2)f(1) \in M(R(\circ)), g_1(f) = \sum_{i \in I_m} a_i, g_2(f) = \sum_{i \in I_m} a_i f(f)$$

Further, let us designate
$$p(f) = f(n)f(n-1)$$
.

- $A = \{i \in I_n; f(i) = L_{a_i}\}$ and $B = I_n \setminus A$.

 $g_{\mathbf{m}}(\mathbf{f}) = \sum_{i_1 > \dots > i} a_{i_1} \cdots a_{i_m}$ for every $\mathbf{m} \ge 4$.

+ i EB j E A aiaj.

 $f^{(m)}(nm) = f(n).$

a,,..,a,.

hence omitted.

$$m = 1$$
. Further, $h(f^{(m+1)}) = h(f) + h(f^{(m)}) -$

However,
$$\sum_{i,j\in A} a_i a_j = i$$
, $\sum_{j\in A} a_i a_j + i$, $\sum_{j\in A} a_i a_j$, $i > i$

while the last sum is equal to - \Sigma_{i,j \in A} a_{i} a_{j}.

Consequently, $\sum_{i,j\in A} a_i a_j = 0$. Similarly for B and we can write $h(f^{(m+1)}) = h(f) + h(f^{(m)}) = h(f) + mh(f) = (m+1)h(f)$.

2.4. Lemma. Let $m \ge 1$. Then $g_k(f^{(m)}) = mg_1(f)$ and $g_i(f^{(m)}) = mg_i(f)$ for every $i \ge 4$.

Proof. Easy.

2.5. Theorem. Suppose that the abelian group R(+) contains no elements of infinite order. Then the order of p(f) (in $M(R(\circ))$) is a divisor of the least common multiple of the orders of the elements a_1, \ldots, a_n (in R(+)).

Proof. We have $p(f)^{m}(x) = p(f^{(m)})(x) = (h(f^{(m)}) +$

 $+\sum_{i=1}^{m}g_{i}(f^{(m)})x + \sum_{i=1}^{m}g_{i}(f^{(m)}) + x$ for all $m \ge 1$ and $x \in \mathbb{R}$ (take into account 2.1 and the fact that $g_{i}(f^{(m)}) = 0$ for each $i \ge n+1$). By 2.2, 2.3 and 2.4, $p(f)^{m}(x) = \max + mb + x$, where both the elements a and b are sums of products of the a_{i} . Therefore, if m is the least common multiple of the orders of the elements a_{i} , then ma = mb = 0 and $p(f)^{m} = id_{R}$. The result is now clear.

2.6. Lemma. For all $a \in R$ and $m \ge 1$, $L_a^m = L_{ma}$.

Proof. By induction on m.

2.7. Lemma. Let a,b,c \in R and m \ge 1. Then $(L_a L_b)^m = L_c$ iff $2m(a \cdot bx) = 0$ for every $x \in R$. In that case, $(L_a L_b)^m = L_{m(a \cdot b)}$.

Proof. We have $(L_aL_b)^m(x) = m(a+b-ab)x + m(a+b+ab)x + x = m(b \circ a)x + m(a \circ b) + x$. Since $b \circ a = a \circ b - 2ab$, $(L_aL_b)^m(x) = m(a \circ b)x + m(a \circ b) - 2m(ab)x$. Hence $(L_aL_b)^m = L_c$ iff $m(a \circ b)x + m(a \circ b) + x - 2m(ab)x = c + x + cx$ for every $x \in R$. In particular, $c = m(a \circ b)$.

2.8. <u>Proposition</u>. Suppose that R(+) is a p-group. Then $M(R(\circ))$ is a p-group of the same exponent.

Proof. Apply 2.5 and 2.6.

References

- [1] R.H. BRUCK: Some results in the theory of quasigroup, Trans. Amer. Math. Soc. 55(1944), 19-52.
- [2] R.H. BRUCK: A survey of binary systems, Springer-Verlag, Berlin 1958.
- [3] M. GARDASCHNIKOFF: Über einen Typus endlicher Gruppen ohne das Associativgesetz, Comm. Inst. Sci. Mat. Mec. Univ. Kharkoff 17(1940), 29-33.
- [4] A.K. SUSKEVIC: On a generalization of the associative law, Trans. Amer. Soc. 32(1931), 204-214.

Istituto di Matematica Università degli Studi, Via Università 12, 43100 Perma, Italia

(Oblatum 17.12. 1981)