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ON A CLASS OF MOUFANG LOOPS
Giordano GALLINA

Abstract: Multiplication groups of Moufang loops d _
ed from antiassociative rings are studied. né pe deriv
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In [1], a class of Moufang loops is constructed. In the
present note, several properties of these loops are investi-
gated. A special attention is paid to the corresponding mul~
tiplication groups.

1. Prelipinarjes. Throughout this paper, let R be a ring
(possibly non-associative) such that x2 = 0 = x-xy for all x,
YE€R,

1.1. Lepma. (i) xy = -yx and x.yz = -xy.z for all x,y,

z€R,
(ii) xy.uv = x(y.uv) = x(yu.v) = ~xy.uv = (xy.u)v.=

= (xe.yu)v for all x,y,u,ve€R.
Proof. (1) We have (x + y)2 = 0, and hence xy = -yx.

Moreover, (x + y)((x + y)z) = 0, x-yz = -y+xz. From this,
X o yZ = =XeZY = ZeXy = =XY°Z.

(1i) This is an easy consequence of (1).

- 319 -



Put R? = {xy;x,ye€R}, RS = ix.yz;x,y,z€ R} and R4 =
= {xy.uv;x,y,u,ve R}. Then R4c r3c R? and, according to l.1,
R’ = {xy.z;x,y,z€ Ri, R4 = {x(y-uv)} ={x(yu.v)¥ = {(xy.u)vi =
= {(x.yu)v} and 2R* = 0. Further, let I = faeR;2a.xy = O for
all x,yeR$ and K = {ae R;2ax = O for every xe R}, Then both
I and K are ideals of R, KEI, R3c K and RPc I.
Now, we shall define a new binary operation o on R by

Xoy =x 4+ y + xy for all x,yeR.

1.2, Proposition. R(o ) is a Moufang loop, the nucleus
N(R(e )) of R(°) is equal to I and the centre C(R( o)) of
R(e ) 13 equal to K.

Proof. All the assertions can be checked easily.

1.3. Lemma. x—l=—x,Xn(yoz) =Sx+y+2z+Xy+xZ+

+yz+x.yz2 and (Xoy)oz =X+ y+ 2 +xy+ X2+ yz+xyez
for all x,y,z€R.

Proof. Obvious.

1.4. Proposition. R(o)/C(R(o)) is a group. In parti-
cular, R(o ) is associatrally nilpotent of class at most 2.

Proof. Let x,y,z€R and a =xol(yocz), b =(xoey)oz.
By 1.1 and 1.3, aob !l = 3x-yze R3EK = C(R(=)).
Consequently, R(o )/C(R(o)) is a group.

1.5. Pro n. R(o )/N(R(o )) is an abelian group.

Proof. By l.4, the factorloop is a group. On the other
hand, (xoy) o (y ox)7! = 2xyeI = N(R(e)) for all x,yeR.,

1.6. Proposition. The second centre C,(R()) of R(o)
is equal to the set of all aeR such that 4a.xy = O for all
x,y6 R. In particular, N(R(e))€ C,(R(o)) and R(o ) is cent-

- 320 -



rally nilpotent of class at most 3.
Proof. aeCy(R(o)) iff (aox) o(xoa)te C(R(©)) for

every xe R and the rest is clear (use 1.4 and 1.5).

1.7. Proposition. R( o) is a group iff 2R> = O.
Proof. Apply l.2.

For every ac R, define three permutations Le' Ra and VB
of R by La(x) =aox, R (x) =xcaandV, = R;lLa. Further,
_ 1=l ;-1 .-1 _ =1 =1
put Sa,b =L, L, Laob and Ta,b =R," Ry Raob for a,beR.

Clearly, all these permutations belong to the multiplication
group M(R(o)) of the loop R( o).

1.8. Proposi n. Ffor all a,beR, the permutations Sa b
]
and T_ , are automorphisms of R(eo ),
1
Proof. We have S, p(X) = x = 2a-bx for every xcR and it
)
is easy to verify that S,  is an automorphism of R(o), Simi-
9

larly for Ta,b‘

1.9. Propogition. Let ae R. Then Va is an automorphism
of R(o) iff 6a.xy = O for all x,yeR.

Proof. We have Va(x) = x + 2ax and the rest is clear.

1.10. Propogition. The loop R(o ) is an A-loop if 6R> = O.

Proof. An A-loop is a loop such that every of its inner
permutations is an automorphism. Now, the statement is clear
from 1.8, 1.9 and from the well known fact that the inner map-

ping group is generated by the permutations S , T and V_.
a,b a,b a

2. Th tiplication group M(R(o )). Let nz1l be an in-
teger, I ={1,2,...,n}% and let £ be a mapping of I, into the
set T = {La,Ra;aeRﬁ. We have f(i) e {L

R_ } and put
ai’ ay
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A={ieX ;¢(4) =L 3 and B = I N4,
i
Further, let us designate p(f) = f(n)f(n - 1) ...
eee £(2)£(1) e M(R( ), gy(£) =, Z Lo gy(f) =

= %?le - iﬁzﬁ ég'lmaiaj, 83(f) =
7<1 2-<~

= iszA ?6‘?7\ hezl Bi(adak) - LGZA jtzb hEI ei(a;jek) +
4<4 *’<1 F<i k<

+"'SB4ZB €], ai(ajak) - G‘b ,}%L 1, ai(adak) and
4t *<? 4<9 k<g.

= ces Z .
gp(f) “'1>Z':'>‘.'mail 8y for every m>4

2.1. Lemma. P((0) = (h(e) + Z g (e)x +. 5 g;(0) +

x for every x€ R, where h(f) = Ea0y — i Tp ey

€
- .= -
ATA yEA Byt L Ey ;%8185 " 1% PR aSLIL I
a3 <4 < 4<1
+

128 —}%A 8485
3< 4

Proof. Some tedious calculations and induction on n.

Now, let m= 1. Define a mapping £ op I, into T by

™1y =e1), £ ™) = 262),.00, 2P () = 20, ...,
£ (nm -1 +1) =£D), £ (alo-1) +2) = 22),...,
f(m)(nm) = £(n).

2.2. Lempa. For every mZ1l and every ie1I, gi(f(m)) =
= mbi,m’ where bi,m is a sum of products of the elements
81seeerap.

Proof. The proof is purely of technical character, and

hence omitted.

2.3. Lemmg. For every mz1, h(f(m)) = mh(f).
Proof. By induction on m. The assertion is obvious for
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= 1. further, h(£™1)) = n(e) + n(elm)) _

B
|

-n.Z = aiad*mieZAjgbaiaJ’m%sZB—}%Baia.j+

1€B 3¢
However,‘i,éZ‘A g8y =, ‘;‘.el\ 8385 * ;oA 818y
F<i 4>
while the last sum is equal to = , = ajaj.
<4

Consequently, ; }ZsA aja; = O. Similarly for B and we can wri-

te h(£(®1)) = n(e) + n(e®) = n(e) » ph(e) = (m + 1)n(e).

2.4. Lemmg. Let m>1. Then gk(f(m)) = mgl(t) and
gi(f(M)) = mg;(f) for every 124.
Proof. Easy.

2.5. Theoreg. Suppose that the abelian group R(+) con-
tains no elements of infinite order. Then the order of p(f)
(in M(R(e))) is & divisor of the least common multiple of the
orders of the elements ay,...,a, (in R(+)).

Proof. We have p(f)™(x) = p(f(m))(x) = (h(f(m)) +

*%’gs gi(f(m)))x +_;"£4 gi(f(m)) 4+ x for all m>1 and xeR
(take into sccount 2.1 and the fact that g (¢{®)) = 0 for each
1Zn + 1). By 2.2, 2.3 and 2.4, p(£)™(x) = max + mb + x, where
both the elements a and b are sums of products of the aj. The-
refore, if m is the least common multiple of the orders of the

elements a;, then ma = mb = 0 and p(t’)m = idg. The result 1s
now clear.
2.6. Lemmg. For all aeR and m21, L:’ = Lpae

Proof. By induction on m.
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2.7. Lemmg. Let a,b,ceR and mZ1l. Then (LaLb)m =1L, iff
n
2m(a-bx) = 0 for every xe€R. In that case, (LaLb) = Lm(aob)'

Proof. We have (LaLb)m(x) =mla+b - ab)x + mla + v +
4+ ab)x + x = mlboa)x + m(aob) + x, Since boa = aecb - 2ab,
(LaLb)m(x) = m(aobl)x + m(aob) - 2m(ab)x. Hence (LaLb)xn = L,
iff m(ao b)x + mlaob) + x = 2m(ab)x = ¢ + X + cx for every

xe R, In particular, ¢ = m(aob).

2.8. Proposition. Suppose that R(+) is a p-group. Then
M(R(o )) is a p-group of the same exponent.
Proof. Apply 2.5 and 2.6,
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