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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,2 (1982) 

ON A CLASS OF DISTRIBUTIVE STEINER QUASIGROUPS 

Raffaele SCAPELLATO 

Abstrac t : Let nZ4q be a pos i t i ve i n t e g e r . Then there 
e x i s t at l e a s t ( 9 ) non-isomorphic d i s t r i b u t i v e S te iner quasi -
groups of order 3 n . 
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C l a s s i f i c a t i o n : 20N05 

Recent ly , s eve ra l papers devoted to the theory of d i s t ­

r i b u t i v e S t e ine r quasigroups appeared. The purpose of t h i s 

shor t note i s to find some es t imates for the number of i s o ­

morphism c la s ses of f i n i t e d i s t r i b u t i v e S te ine r quasigroups. 

The r e s u l t i s based on a cons t ruc t ion introduced in [ 3 1 . 

A d i s t r i b u t i v e S te ine r quasigroup i s a groupoid s a t i s ­

fying the i d e n t i t i e s x.xy=y, xy=yx and x.yz=xy.xz. Let Q be 

a d i s t r i b u t i v e S te iner quasigroup. Denote by M(Q) the s e t of 

a l l ordered pa i r s (a ,b) such tha t a , b e Q and the subgroupoid 

of Q generated by <a ,b , c ,d> i s medial ( i . e . s a t i s f i e s the i -

d e n t i t y xy.uv=xu.yv) for a l l c , d e Q. I t i s well known t h a t 

M(Q) i s a congruence of Q and we put m(Q)=card Q/M(Q). This 

card ina l number i s sa id to be the media l i ty index of Q. I t i s 

c lear that m(QxP)=m(Q)m(P) whenever Q and P are d i s t r i b u t i v e 
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Steiner quasigroups. 

Let G be a (additively written) group of exponent 3 and 

let S=Gx(l,2,3). We define a binary operation on S as foll­

ows: (x,l)(y,2)=(y,2)(x,l)=(x+y,3),(x,l)(y,3)=(y,3)(x,l)=-

=(-x+y,2), (x,2)(y,3)=(y,3)(x,2)=(y-x,l), (x,i)(y,i)= 

=(x-y+x,i) for all x,yeG and 1=1,2,3. We obtain thus a grou-

poid which will be denoted by G(3). 

Proposition 1. For any group G of exponent 3, G(3) is 

a distributive Steiner quasigroup. 

Proof. By the definition, G(3) is commutative and it 

suffices to check the other two identities, namely a.ab=b and 

a.bc=ab.ac. Further, for any 1=1,2,3, the set Gx4i} is a sub-

groupoid of G(3), isomorphic to the core of G (which is clear­

ly a distributive Steiner quasigroup). Therefore, we can con­

fine ourselves to the case in which a,b,c have not the same 

first coordinates. We have, for example, (x,l) t (x,l)(y,2)J= 

=(x,l)(x+y,3)=(y,2) and (x,l) t(y,l)(z,2)] =(x,l)(y+z,3)= 

=(-x+y+z,2)=(x-y+x,l)(x+z,3)= Ux,l)(y,l)] t(x,l)(z,2)3. The 

remaining cases are similar. 

Proposition2. Let G be a non-commutative group of ex­

ponent 3 with the center Z(G). Then the quasigroup G(3)/M(G(3)) 

is isomorphic to (G/Z(G))(3). Moreover, m(G(3))=3 tG:Z(G)]. 

Proof. First, it is easy to observe that ((x,l)(y,l)) e 

£M(S), S=G(3), iff x-yeZ(G). Since the translations of S are 

automorphisms and M(S) is invariant, this statement remains 

true for 1=2,3, and hence, for each 1=1,2,3, ((x,i),(y,i)) e 

£ M(S) iff x-yeZ(G). Now, we show that such pairs exhaust the 

set M(S). Suppose, on the contrary, that ( (x, i), (y,j)) <s M(S) 
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for i4*j. Using the same arguments as above, we can restrict 

ourselves to the case i=l, J=2. We have [(a,l)(b,2)3 £(c,l) 

(d,l)j = [(a>l)(c,l)3 [(b,2)(d,l)3 for all c,d €G. Hence 

d-c+a-sa-c+d an^f for c=o, a€Z(G). Thus d-c=>-c*d and G is abe-

lian, a contradiction. Now, we define a mapping f of S/M(S) 

into (G/Z(G))(3) by f:(a,i)i M(S)—>(a*Z(G),i). It is easy 

to show that f is an isomorphism of the quasigroupS.The rest 

is clear. 

Proposition 3. Let G be a group of exponent 3. Then 

G(3) is nilpotent of the same class of G. In particular, G(3) 

is nilpotent of class at most 3. 

Proof. If G is abelian, a direct calculation shows that 

G(3) is medial and the result is verified in this case. Sup­

pose that G is non-commutative and denote by n its nilpoten-

cy class. Put G-^, G ^ ^ j / Z ^ i ) and Mi = M t G ^ ) ) for i=l, 

2,...,n*l. Applying repeatedly Proposition 2, we see that 

Gi(3)/Mi is isomorphic to
 G 4 . v i ( 3 ) for i=l,...,n, while 

Gn+1 ̂ ^ * W l is m e d i a l» since Gn+i is abelian. Thus the nil-

potency class of G(3) is just n. The rest follows from £2, 

Lemma 5.33. 

Proposition 4» There exist three non-isomorphic distri­

butive non-medial Steiner quasigroups AfB,C of order 3 and 

mediality indices 3 , 3 , 3 , reap. 

Proof. Let G be the group of order 3 defined by the 

relations (1.17) of 193 for n»3. Clearly, Z(G) has order 3, 

and so m(A)=-3 for A=G(3). Similarly, using the group G defi­

ned in I9> pg. H 4 3 (for p=-3 and oC,̂  j)-*0), we obtain a dis­

tributive Steiner quasigroup B of order 3* and mediality in-

- 315 -



dex 3 • F ina l ly , we put C=SxT where S i s a non-medial d i s t r i ­

but ive Steiner quasigroup of order 81 and T a medial d i s t r i ­

bu t ive Steiner quasigroup of order 9 (see f 6 j ) . 

Proposition g. Let n £ 4 q be a pos i t ive in teger . Then 

there e x i s t at l eas t f^) pair-wise non-isomorphic d i s t r i b u t i ­

ve Steiner quasigroups of order 3n« 

Proof. Let A,BfC be the quasigroups defined in the pre­

ceding proposi t ion. We have seen that C i s the d i rect product 

SxT, while A and B are d i r e c t l y i r r e d u c i b l e . For any ordered 

t r i p l e ( a , b , c ) of natural numbers such that a+b+c -= q, we deno­

te by S (a ,b , c ) the d i rect product of a copies of A, b cop ies 

of B, c cop ies of C and a medial Steiner quasigroup of order 

3n-6(a+b+c)# obviously, card S (a ,b , c )=3 n . Now, suppose that 

S (a ,b , c ) and S(a , b ' , c ) are isomorphic. I t i s known (see L5J) 

that a Steiner quasigroup has a unique decomposition into a 

d i rec t product of i rreduc ib l e quasigroups. Since both A and B 

are i rreduc ib l e , a=a and b=*b'. Moreover, S i s irreducib le and 

we have c=c . We have proved that the quasigroups S (a ,b ,c ) are 

pair-wise non isomorphic and the resul t follows e a s i l y . 

The author wishes to acknowledge with thanks the help fu l 

comments of Prof. Dr. T. Kepka. 
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