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ON A CLASS OF DISTRIBUTIVE STEINER QUASIGROUPS
Raffaele SCAPELLATO

Abgtract: Let n=Z4q be a positive integer. Then there
exist at least (%) non-isomorphic distributive Steiner quasi-
groups of order 30,

words: Distributive, Steiner, quasigroup.

Classification: 20NO5

Recently, several papers devoted to the theory of dist-
ributive Steiner quasigroups appeared. The purpose of this
short note is to find some estimates for the number of iso-
morphism classes of finite distributive Steiner quasigroups.

The result is based on a construction introduced in [3].

A distributive Steiner quasigroup is a groupoid satis-
fying the identities x.xy=y, xy=yx and x.yz=xy.xz. Let Q be
a distributive Steiner quasigroup. Denote by M(Q) the set of
all ordered pairs (a,b) such that a,beQ and the subgroupoid
of Q generated by {a,b,c,dY is medial (i.e. satisfies the i-
dentity xy.uv=xu.yv) for all c¢,de Q. It is well known that
¥(Q) is a congruence of Q and we put m(Q)=card /M(Q). This
cardinal number is sald to be the mediality index of Q. It is

clesr that m(QxP)=m(Q)m(P) whenever Q and P are distributive
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Steiner quasigroups.

Let G be a (additively written) group of exponent 3 and
let $=Gx(1,2,3). We define a binary operation on S as foll-
ows: (x,1)(y,2)=(y,2)(x,1)=(x+y,3),(x,1)(y,3)=(y,3) (x,1)=
=(-x+y,2), (x,2)(y,3)=(y,3) (x,2)=(y=x,1), (x,i)(y,i)=
=(x-y+x,i) for all x,yeG and i=1,2,3. We obtain thus a grou-
poid which will be denoted by G(3).

Propogiti 1. For any group G of exponent 3, G(3) is
a distributive Steiner quasigroup.

Proof. By the definition, G(3) is commutative and it
suffices to check the other two identities, namely a.ab=b and
a.bc=ab.ac. Further, for any i=1,2,3, the set Gx{i} is a sub-
groupoid of G(3), isomorphic to the core of G (which is clear-
ly a distributive Steiner quasigroup). Therefore, we can con-
fine ourselves to the case in which a,b,c have not the same
first coordinates. We have, for example, (x,1) [(x,1)(y,2))=
=(x,1) (x+y,3)=(y,2) and (x,1) [(y,1)(z,2)] =(x,1)(y+z,3)=
=(-x+y+z,2) =(x=-y+x,1) (x+z,3)= [(x,1)(y,1)] [(x,1)(z,2)]. The

remaining cases are similar.

sition 2. Let G be a non-commutative group of ex-
ponent 3 with the center Z(G)., Then the quasigroup G(3)/M(G(3))
is isomorphic to (G/2(G))(3). Moreover, m(G(3))=3 1G:2(G)],
Proof. First, it is easy to observe that ((x,1)(y,1)) e
e M(S), $=G(3), iff x-y e Z2(G). Since the translations of S are
automorphisms and M(S) is invariant, this statement remains
true for i=2,3, and hence, for each 1=1,2,3, ((x,i),(y,i)) e
€ M(S) iff x-ye Z(G). Now, we show that such pairs exhaust the

set M(S). Suppose, on the contrary, that ((x,1i),(y,J))e M(S)
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for i+#Jj. Using the same arguments as above, we can restrict

ourselves to the case i=1, j=2, We have [(a,1)(b,2)1[(c,1)
(d,1)] =1(ay1)(ec,1)] [(b,2)(d,1)] for all c,d €G. Hence

d-c+a=a=-c+d and, for ¢=0, ae Z(G). Thus d-c=—c+d and G is abe-

lian, a contradiction. Now, we define a mapping £ of S/M(S)

into (G/2(G))(3) by f:(a,i) | M(S) —>(a+2(G),1i). It is easy

to show that £ is an isomorphism of‘the quasigroups.The rest

is clear.

Propogition 3. Let G be a group of exponent 3. Then
G(3) is nilpotent of the same clags of G. In particular, G(3)
is nilpotent of class at most 3.

Proof. If G 1is abelian, a direct calculation shows that
G(3) is medial and the result is verified in this case. Sup-

pose that G is non-commutative and denote by n its nilpoten-
cy class. Put G,=G, G1+1=Gi/Z(Gi) and My = M(Gi(B)) for i=1,
2,.+04n*l. Applying repeatedly Proposition 2, we see that
G;(3)/M; is isomorphic to Gy, (3) for i=1,...,n, while
Gn+1(3)/Mn+l is medial, since G, is abelian. Thus the nil-
potency class of G(3) is just n. The rest follows from [2,
Lemma 5.3].

Proposition 4. ‘There axist three non-isomorphic distri-
butive non-medial Steiner quasigroups A,B,C of order 36 and
mediality indices 35, 34, 33, resp.

Proof. Let G be the group of order 3’ defined by the
relations (1.17) of [9]) for n=3., Clearly, Z(G) has order 3,
and so m(A)=3? for A=G(3), Similarly, using the group G defi-
ned in [9, pg. 114) (for p=3 and o;(J)=0), we obtain a dis-
tributive Steiner quasigroup B of order 35 and mediality in-
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dex 34. Finally, we put C=SxT where S is a non-medial distri-
butive Steiner quasigroup of order 81 and T a medial distri-
butive Steiner quasigroup of order 9 (see [6]).

Proposjtion 5. Let nZ4q be a positive integer. Then
there exist at least (q) pair-wise non-isomorphic¢ distributi-
ve Steiner quasigroups of order 3n,

Proof. Let 4,B,C be the quasigroups defined in the pre-
ceding proposition. We have seen that C is the direct product
SxT, while A and B are directly irreducible. For any ordered
triple (a,b,c) of natural numbers such that a+b+c <q, we deno-
te by S(a,b,c) the direct product of a copies of A, b copies
of B, ¢ coples of C and a medial Steiner quasigroup of order
3n‘6(8+b*°). Obviously, card S(a,b,c)=3". Now, suppose that
S(a,b,¢) and S(a’,b",c”) are isomorphic. It is known (see [5])
that a Steiner quasigroup has a unique decomposition into a
direct product of irreducible quasigroups. Since both A and B
are irreducible, a=a’ and b=b’. Moreover, S is irreducible and
we have c=c . We have proved that the quaigroupa s(a,b,c) are

pair-wise non isomorphic and the result follows easily.

The author wishes to acknowledge with thanks the helpful
comments of Prof. Dr. T. Kepka.
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