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FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS
LE VAN HOT

Abstract: We prove new fixed point theorems for multi-
valued mappings. Moreover, we construct a simple example
which shows that the conJecture of J. P. Penot, stated in
(8], is false.
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Classification: Primary 4TH10, 47H15
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1o A _fixed point theorem for multjivalued mappings in
c le r aces.

Let M be a metric space with metric d,A,B being subsets
of M,x ¢ M. Put: d(xo,A) = inf {d(x,x):xc A%,
D(A,B) =12 >0:4 =V, (B) and BeV,(a)}= max{supid(x,B):xc A},
sup.d(y,A):y =cBt:, where V,(A) =1ycM, d(y,Y) =2} forAa > O.
vefinition 1. Let M be a metric srace with metric d. We
say that a map F:M— M satisfies the Caristi’s condition if
there exists a lower semicontinuous function h:M ——»R’ =[0,m)

such that d(x,f))=h(x) - h(f(x)) for all x e M.

Theorem 1. Let M be a complete metric space, F:M—M
be a multivalued mapping of M into the ftamily of all nonempty
compact subsets of M such that D(F(x),F(y)) <d(x,y) for all
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x3y e M. Suppose that there exists a single-valued map f:
:M —> M satisfying the Caristi’s condition such that:
1) d(x,F(x)) = inf £a(£™x)),F(£Mx)): n=1,2,...}

for all xeM, where £™{x) = (fo £o ... o £)(x),
n-times

2) K=%xeM, f(x) = x5 is precompact.
Then F has a fixed point in M.

Proof. We claim that for each z<M there exists a z e K
such that d(zo,F(zo))ézd(z,F(z)). Let h:M—>R, be a lower
semicontinuous function such that d(x,f(x)) < h(x) - h(f£(x))
for all xeM. We write x2y iff d(x,y)< h(x) - h(y). Then <
is a partial order on M. Lét z be an arbitrary fixed point
in M. Put M, ={xe M:d(x,F(x)«d(z,f(2))}. Then M, is a non-
empty (ze M,) closed subset of M, since d(x,F(x)) is a con-
tinuous function on M. Therefore Mz is complete. Using the
same argument as in (8] one can prove that there exists a ma-
ximal element z, in Mz (i.e. if XlEMz and Xz then x = zo).

Suppose that there exists amne N such that
a£™z ), FleMz ) alz ,Flz,))e d(z,F(z))

Then £™(z )€ M,. On the other hand, we have: '
d(zo,f(zo))éh(zo) - h(f(zo)), d(f(zo), fz(zo))‘——h(f(zo)) -
= n(£2(z ) an, a6z ), £z ), < ne™ () - nie(z ).
Hence "

alz g™z )) < =, alet™Hz ), 11 (2 ) «niz) - n(£2z)),
where f°(z°) = z,. This implies fn(zo)? Zg, fn(zo)c M,. Hence
fn(zo) =z, and it is clear that £lz) =z e KiiM,.

Now suppose that d(fn(’zo),F(fn(zo))>d(zo,F(z°)) for
all n. Then there gxists a subsequence {ni§ such that

n
l%m d(fni(zo), Flge 1(zo))) = d(zo,F(zo)). It is easy to see
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that {fn(zon is a Cauchy sequence in M. Then there exists a
n
point z € M such that z2,= lim f i(zc‘), since M is complete.
Hence
M3 0) 2 n(z,) Mz )
d(zo,zoo) = lim d(zo,f zo) =h(z,) - lim h(f “(z)) =

£hlzy) = hizy),

ny ny
dlz, ,flz ) = lim d(f “(zy), F(£ “(z))) =d(z,F(z ))<=

2 d(z,8(z2)),

L}

This means that z e M, and z,,> Zge Therefore z,, Z, and

h(z,,) = h(g(z)) = h(z ). Hence d(£(z ),F(£(z)))

= d(zo,F(zo)). This contradicts the assumption
d(fn(zo),F(fn(zo)))>-d(zo,F(zo)) for all n=1,2,... . This pro-

ves our claim.

It is easy to see that inf { d(x,F(x)):xc M =
= inf } d(x,F(x)):x cK?{ Since K is compact, there exists a
point x ¢ K such that d(x.,F(x )) = inf{d(x,F(x)):xe M. If
r =d(x,,F(x)) >0, take a ye F(x,) such that d(xo,y) =
= d(xo,F(xo)) = r. Then d(y,F(y)) = D(F(xo) ,F(y))<d(x0,y) =r,
This contradicts the assumption
d(xy,F(xy)) = inf {d(x,F(x)):x & Mf. Hence d(x ,F(x )) =0 and
X € F(xo). This completes the proof.

Remgrk: In [8] J.P. Penot has stated the following prob-
lem: Let M be a complete metric space, h:M—> R_ be a lower
semicontinuous function and F:M — M be a multivalued mapping
of M into the family of all nonempty closed subsets of M sa-
tisfying the following condition:
d(x,F(x))2 h(x) - inf {h(y):ye F(x))§. Does F have a fixed
point in M ?

The following simple example shows that this conjecture
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is false. .

Put M = [0,c0) with the usual metric. Put h(x) = Thr
Fx) =lx + ET%:;T, 2x+1] for all x €M. Then M is a comple-
te metric space, h:M— R’ is continuous, F satisfies the
condition d(x,F(x)) h(x) - infih(y):y eF(x){, but F has
not any fixed point in M.

Proposition I. Let M be a complete metric space, h:
‘M — R, be a lower semicontinuous function, F:M— M be a
multivalued mapping which maps M into the family of all non-
empty closed subsets of M. Suppose F satisfies the following
condition inf {d(x,y) + h(y):ye F(x)f=h(x) for all xeM.
Then F has a fixed point in M.

Proof. We claim that for each xe M there exists an f(x)e
e F(x) such that d(x,f(x)) 42 h(x) - 2 n{f(x)). If d(x,F(x))=
=0, put £f(x) = x. If d(x,F(x))>0, then
d(x,f(x)) + inf {d(x,y) + 2h(y):ye #(x)F =2 inf { d(x,y) +
+ hiy):y e F(x)t = 2h(x).,
It follows that inf {d(x,y) + 2h(y):yec £(x)7< 2h(x). Then the-
re exists a point f(x) e F(x) such that d(x,f(x)) + 2h(f(x)) £
Z 2h(x). This proves our claim.
According to Caristi’s Theorem there exists a point X, € M such

that x = f(xo)e F(xo). This completes the proof.

Corpllary 1(S.B. Nadler [7]), Let M be a complete met-
ric space. If F:M—> M is 2 multivalued contraction mapping
which maps M into the family of all nonempty closed subsets

of M, then F has a fixed point.

Proof. Let D(r(x),F(y))=kd(x,y), where O 4k<1l, Put

- 140 -



h(x) = TEE d(x,F(x)). Then

inf fd(x,y) + hiy):yef(x)? = infid(x,y) + T&'E d(y,F(y)):
tye F(x)] = ing d(x,y) + Fo5 - DOF(x),F(y)) iy = Px)?
2infddlx,y) + T%E k d(x,y):ye F(x)§ = T%E d(x,f(x)) = h(x).
By Proposition 1, F has a fixed point in M.

Corollary 2. Let M, h, F be as in Proposition 1.
1. If d(x,F(x))&h(x) - sup+ h(y):ye F(x)*, then F has

a fixed point in M.
2. If D(-xi,F(x))=h(x) = inf{ h(y):ye F(x) ', then the-

re exists an x e M such that f(xo) =X .

Proof. It is clear that F has a fixed point in M, becau-
se inf; d(x,y) + hiy):yz F(x)7 = d(x,¥(x)) + sup h(F(x)) and
inf < d(x,y) + hiy):y- #F(x)] = D¢ x ,#(x)) + inf+ hiy):ye Fix) .
To prove 2, it is sufficient to note that for each x- M there
exists a point f(x)e F(x) such that
D(-x',f(x))£h(x) - inf: h(y):y«< F(x)] = 2h(x) - 2n(£(x)),

By Caristi s Theorem there exists a point Xo€ M such that Xy =
= flx,). Then D(:x, yFlx ))= 2n(x,) - 2n(£(x)) = 0. It fol-

lows that F(xo) = {xo'. This completes the proof.

2. A _fix nt_theorem for multivaiued mappings in
Banach spaces
Defini n 2. Let X, Y be topological spaces, FiX- »Y
be a multivalued mapping. We say that F is upper semicontinu-
ous at xeX if for each open set G< Y, #(x)c G there exists
a neighborhood U of x such that for each x’e U we have F(x')<

< G.
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Theorem 2. Let X be a Banach gspace, C<S£X be a convex
closed nonempty bounded subset of X, F:C—> C be a multivalu-
ed nonexpansive mapping which maps into the family of all
nonempty convex closed subsets of C. Suppose that there ex-
ist a function m:R,—> R, which is nondecreasing and w(t)>
>0 for all t>0, a function ¢ :C-C—> R weakly continuous at
8, ¢(8)>0 and a mapping ¥ :C~C — <€ (X*), where ¥(X*) deno-
tes the family of all nonempty closed subsets of the dual spa-
ce X¥, weakly-strongly upper-semicontinuous at &, y (@) is
compact, such that

dlx,F(x)) + dly,F(y)) = w (il x=yli ) ¢ (x=y) - ¥ (x-y)
for all x,y€C, where ¥g(x) = sup {I<{x*x>| x*e y(x)}. Then

F has a fixed point in C.

Proof. By the boundness of C, there exists a number M>0
such that CSBy = {xeX:lix £ M{. Hence C-C<B,y. By the stan-
dard argument there exists a sequence fxnk < C such that
dlx,,F(x;))< § for each neN. Since $x,} is bounded in X, f x }
is weakly precompact. Then there exists a weakly Cauchy subnet
{x?(i)i te1 Of 1x.% where ©:I—> N. Then it is clear that the
net {ui,J}(i,j)cIXI where Uy ) = Xp(1) T Xp(y) converges weak-
ly to ®.

We claim that lim | ui,J“ = 0. Suppose that it is false.
There exists a number r >0 such that for any (i,jle Ix1I the-
re exists an (17,3 )eIxI, (1",37)2(i,3) and I Uy g h = r,
Since @ 1is weakly continuous at € we have lim cp(ui’d) =
= ¢(8) = k >0. Let 7:X—> X** be a canonical embedding map
of X into its bidual space X**, Since {'v(ui’J)} is bounded

in X*¥*, {fu(ui j)} is an equicontinuous family of mappings
’
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from (X*, i« ) ) into R. Since {qi(ui’J)f converges pointwi-
se to © on X* and y.(e) is a compact subset of X* by Theorem
4.5 19, chapt. III] it follows that {’t(ui,J)f converges u-
niformly to © on y(®). Then there exists an index (1°,j°)€
€ I=1TI such that for (1,J)e IxI, (1,§)= (i,,J,) we get
g(uidii%-k and l(m(utjhx*>) =l<xﬁuhj>|e

5,% k ao (r) for all x*e€ y (@). Since y is weakly-strongly
upper-semnicontinuous at € and {“i,j} converges weakly to €,
there exists an index (ij,Jj)e I=I, (1,,§,)2 (10..10) such
that:

MNP EOR kedr) gX(g), where BY = {x*e x*: | x*l 2 1§
for sll (1,§) e I=I, (1,§)=(iy,J;). Then

w}‘“i,J) = sup /< x*uy J)l.x € yluy J)f

sup 11 <x*,uy >0 :x* e y(e) “"1%%21 B} (e)§ £
zsup {1 x* "y ;)\ ix¥*e zy(e)i +k—1’-‘g’&&ﬁ sup{l(x*,ui,JN :
:x*eBlj_-J%QL-+ k“ﬁf j”“ —1££l

N

for all (i,j)e IxI, (1,§) =(4;§))~

Take n,meN such that & + Z¢ k"’“(")

. Choose i,€1I, 1,= i,
1,Z J; such that (0(1)Z max 5n,m§ for all 1¢ I, 1Z1,, Take
(13,33)5 I=1, (i3,33)% (35,1,) such that ui3'33“ z r, Then
d()(.so(i3),f'(xsc(i3))) + d(x (‘j ),l‘(x (.j ))) =
“¢ (u Yeolilu 1) = gy (u ).
i3ds 13,9y Yo' %4,5,

Hence
1

1 1.
_ + E Suz ) (UZJ3’ d(x ‘(i )’F( D(i ))) *
+* d(x‘(J ),F(X (J ))) % k u(r) —4%121 = % k(t(r).

This contradicts % + % ’5 ks.{r) and this proves our claim.
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Since lim l“i,d‘ = 0, it follows that {xpuji is a Cauchy
net in the atrong topology. Therefore {x?(i}f converges
strongly to an xe C. Then for 1 £I, we have

dfx,?(x)}ﬁ- Hx - xe(”ll »> d(xq](ﬂ,ﬂ'(xgn(i))) +
1
L d D(?(xp(i)),ﬂx”52lx - xco(ijﬂ + m.

Henee di(x,F(x)) = 0. It follows that xe Fix) and thie comp-
letes the proof.
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