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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

ON MEASURES OF NONCOMPACTNESS IN TOPOLOGICAL 
VECTOR SPACES 
Bogdan RZEPECKI 

Abstract: In th i s paper we give some axiomatic concept 
for measure of noncompactness which i s useful in a p p l i c a t i ­
ons to the f i n i t e or i n f i n i t e system of equations. In p a r t i ­
cu lar, f ixed point theorems of Darbo type (cf .£5l) are proved. 

Ke.v words: Fixed point , measure of noncompactness, spec­
tra l rad ius , system of ordinary d i f f erent ia l equations. 

Class i f icat ion: 47H10, 34G20 

-•• Introduction. Let L(X) be the algebra of continuous 

l inear operators from a normed space (X, II • II ) into i t s e l f 

with the standard norm | » 1 , and l e t r(A) ( = lim I An 1 l ^ n ) 
fit-rcc 

be the spectral radius of AeL (X). It i s known (see £91) that 

for A in L(X) and G > 0 there e x i s t s a norm II * IIe on X e-

quivalent to ll-1 II and 8uch that | A I E (= aup -(ll Ax II e : 

: II x \\t <k 1) £ e • r (A) . 

This note had been insp ired by the above r e s u l t . We pre­

sent an axiomatic approach to the measure of noncompactness 

of s e t s and e s t a b l i s h theorems of Darbo type (ef.L'5])« In 

part icular , a f ixed point resu l t for a system of k-set cont­

ractions (c f .15] ) i s proved. Some app l icat ions are given. 
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2. Main theorems. For an arbitrary bounded subset X of 

a Banach space M, the measure oG(X) of noncompactness of X, 

introduced by K. Kuratowski, is defined as the infimum of all 

S -> 0 such that there exists a finite covering of X by sets 

of diameter -£ S • (For properties of Kuratowski function oc , 

see e.g. Ill or T9.L) There are some other definitions of me­

asure of noncompactness (cf. [15]). Next, we give some axio­

matic concept which is useful in applications to the finite 

or infinite systems of equations. 

Throughout the rest of this section E will denote a Haus-

dorff locally convex topological vector space. For subset X 

of E, we shall denote their closure by X and their closed con­

vex hull by conv (X), and FtXl will denote the image of X un­

der a self-map F of E. 

Definition. Let B be a Banach space and let S be a cone 

in B generating the partial order <&s. Assume that S ^ is so­

me set containing S. In S ^ we introduce the relation & by 

{
x, y e S and x ^ s y; 

x, y e S r t ? \ S and x * y; 

x e S and y g S ^ N S. 

We c a l l a function ^ - ^ - — ^ S ^ ( 2 1 denote a family of 

a l l nonempty subsets of E) an S-generalized measure of noncom­

pactness on E i f for every point x in E and every subsets Xf 

T of E we have ( l ) $ s ( X u { x } ) * <$S(X), (2) i f XcX then 

§SCX) *£$ S <Y), and (3) i f $>$(X) * 0 (0 denotes the zero of 

Bi then X i s r e l a t i v e l y compact subset of E. If B i s an Euc­

lidean space with the cone S * £0,co) and S^,« 10,+col , then 
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our function $ 5 be cal led a generalized measure of noncom-

pactness on £• 

Theorem 1. Let K be a nonempty convex closed subset of 

B and l e t $ ^ be an S-generalized measure of noncompactness 

on E such that ^ ( K j e S and $ s ( conv X) » $^(X) for each 

subset X of K. Let AeL(B) be an operator with the spectral 

radius l e s s than 1 and the property that AlSlc S. Assume, 

moreover, that F is a continuous mapping of K into I t s e l f and 

$ S (F1 .X3)£A(§ S (X)) for each subset X of K. Then the se t of 

f ixed points of F i s nonempty and compact. 

Proof. Suppose that X i s a subset of K such that 

$S (F[X3 ) * $ S ( X ) . Then $ S ( X ) £ S and $S<X) ~A( $ S ( X ) ) ; 

thus $ s ( X ) ^ A n ( $ S ( X ) ) for n • 1 , 2 , . . . . Since the equation 

y -- Ay has exactly one so lut ion and AnC$«(X))—> 0 as n —> 

-—> cc (cf. Th. 1 .2 .2 .9 in t i l ] ) , we conclude that 

- $ s ( X ) e s and therefore $ S (X) = b. Thus X i s r e l a t i v e l y 

compact. 

Let us put XQ 9 -txffl:m = 0 , 1 , . . . } with xQ in K and x n » 

* ^ n - l f o r n 2 l # We h a v e * o c K a n d * S ( X o * s * s * F t 3 V * # 

Since X i s compact and F maps X into i t s e l f there e x i s t s a 

nonempty sub9et ZQ of X*0 such that FCZQ1 = ZQ (see 1 2 ] , Th. 

V I . 1 . 8 ) . 

Now, l e t V denote the c lass of a l l subsets V of K such 

that Z c V , con? (V) = V and FlV.lcV. We have K g f and 0 * 

coiiv (FlV3> e V whenever V e V . Further, put VQ » O i V: 

: V s V J . Then VQ 6 1T , and we get VQ -* coiiv* (FCV0D. Con­

sequently F i s a continuous mapping of the convex compact V 
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into i t a e l f and b> Schauder-Tychonoff f ixed point theorem, 

F haa a f ixed point . Thia f ini3he9 the proof. 

Theorem 2 . Let ^ be a generalized meaaure of noncom-

pactneas on E with the property that cond i t ion ( l ) i s r e p l a ­

ced by ( l ' ) : ^Q^ Xn i s nonempty compact whenever 4'Xn: n * 

= 1 , 2 , . . . } i s a family of nonempty closed sub3et9 of B such 

that x
n + x c x n f o r n - ^ 1 a n d ^(Xn)i—.v 0 aa n —> oo . Let K be 

a nonempty convex closed sub3et of E, <|(K)-< oo and 

$ (conv X) = $(X) for each aubset X of K. As9ume, moreover, 

that F i 3 a continuous mapping of K into i t s e l f and 

§ ( F l X 1 ) ^ p ( $ (X)) for every sub9et X of K, where p i s a 

right continuous function on £09co) with p ( t ) - < t for t^*0. 

Then the set -txeK: Fx = x£ i s nonempty and compact. 

The proof of th i s r e s u l t , although more d i f f i c u l t , r e -

3emble3 that of Darbo theorem (cf. Th. IV.3.2 in [ 9 ] ) and 

therefore w i l l be omitted. 

The above reault haa interes t ing app l i ca t ions , whose ba­

s i c ideas are i l l u s t r a t e d by the examples below. 

Example 1. F i r s t , we consider a "d i screte measure of 

noncompactness" if* on our apace E with the weak topology 

6 (E f E*) . Define 

!'0, iff X is <o(E,E*)-relatively compact; 
d"(x) *i 

^ l f iff X is not <S(EfE*)-relatively compact 

for subsets X of E. Obviously, cf is monotone and the assum­

ption (l') is 9atisfied for $ » a" • Therefore from the abo­

ve theorem we deduce a fixed-point reault whenever all boun­

ded sets of E are 6(EfE*)-relatively compact. More precisely, 
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we get the following r e s u l t : 

Suppose K i s a nonempty convex closed bounded se t in E. 

I f E is a semireflexive space and i f F i s a weakly-weakly 

continuous mapping ( i . e . , the topology on both the domain 

and the range i s the weak topology 6(E,E*)) of K in to i t ­

s e l f , then the set of f ixed po ints of F is nonempty and 

£ (E,E"*)-compact • 

Example 2. Here we define a measure of weak noncompact-

ness on a Banach space M (see De Blas i [ 6 1 ) : Denote by U the 

norm uni t b a l l in M. The measure of weak noncompactness /3(X) 

of a nonempty subset X of M i s defined as the infimum of a l l 

& > 0 such tha t there e x i s t s a weakly compact subset C of M 

with XcC + e U. 

The funct ions OG and ft are examples of genera l ized me­

asures of noncompactness with the p rope r t i e s l i s t e d i n Theo­

rem 2 . In p a r t i c u l a r t h i s theorem y i e l d s the fo l lowing co ro l ­

l a r y : 

Let M be a Banach space, l e t K be a nonempty convex c l o ­

sed bounded s e t i n M, and suppose F i s a weakly-weakly c o n t i ­

nuous mapping of K in to i t s e l f such t ha t /3 (FCXl) £ p( /3 (X)) 

f o r every subset X of K and with a funct ion p as i n Theorem 

2* Then the se t of f ixed po in t s of F i s nonempty and weakly 

compact. 

Example 3 . To conclude t h i s s e c t i o n we give an example 

showing how genera l ized measures of noncompactness can be u-

sed to obta in a r e s u l t of Nashed and Wong type (cf . e . g . Th. 

2 in I l O l ) . 
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Let B be a Banach space with the measure of noncompact­

ness oc , and l e t K be a nonempty convex closed bounded sub ­

set of B. Suppose we are given: L - a l inear continuous map­

ping of B into i t s e l f such that some i terate Ln of i t i s a 

k-set contraction on K ( i . e . , oo(LnCX])^k • ot (X) for each 

subset X of K, and f - a continuous mapping from K into a 

compact subset of B. 

For a bounded subset X of B , $(X) Is defined as 

•JIM k ( n '" i ) / no6(L i"*1[Xj); i f the diameter of X i s i n f i n i t e , 

then l e t $(X) be equal • co • I t i s not hard to see that § 

i s a generalized measure of noncompactness on B such that 

§(conv X) » $(X) and $(X • X) £ $ ( X ) • $ (X). Now for any 

subset X of Kf <§CfLx • fx:x € X}) «. <$(LLX.l) * 

» . - 2 . k ( n " i ) / n o c ( L i L x 3 1 ^ k 1 / n $ ( X ) and therefore, we have the 
<-» i 

following corollary to Theorem l : 

I f k < l and Lx • f x e K for each x in X, then the equa­

t ion Lx • fx » x has a so lut ion in K. 

3* An existence theorem for system d i f f erent ia l equations. 

In th i s part we assume that ( E i , li * K )̂ ( i * l , 2 , . . . , n ) i s a 

Banach space with the measure of noncompactness oC^9 and non­

empty convex closed bounded subsets K .̂ 

F i r s t , we prove a f ixed point resul t for a system of k-set 

contractions: 

Let F£ (1 =* l , 2 , . » * , n ) be a continuous mapping from 

K = Kjx-K^ M . ^ K J J into K± such that oc^F^Xjx X2* . . . x y ) ^ 

-•*-2,j l - i j ^ j ^ j ) £or e a c n subset Xj of Kj ( j » l , 2 , . . . , n ) . 

Assume, moreover, that Lk±*] ( l , j = l , 2 , . . . , n ) i s a matrix 
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with the spectral radius less than one (i.e. equivalently 

*11 

*21 

Ł12 - k. li 
kгt 

- k 
il 

- k 
i2 

Łii 

> 0 

for all i = l,2,...,n. Then there exists a point ^ xx , x2»* # # 

...fxn) in K such that x^ = tf-j/x-, »x2,... ,xn) for i -* 1,2,... 

...,n. 

To prove this claim let F = (F^i^,... ,Fn> and let L 

denote the linear operator generated by the matrix Cka.,1. 

Let us put $ S(X) =- ̂ i ^X-^), S- 2(X 2),..., «^n(Xn)) for each 

subset X = X^x x ? x , . . x 3Cn of E » E-jxE^x . . . x E n , where 

^ i ^ i ^ i s e c - u a l t o ° ° i ^ i ^ or • oo i f diameter of X± i s f i ­

ni te or i n f i n i t e , r e s p e c t i v e l y . Then $ s i s an S-generali-

zed measure of noncompactness on E which has the propert ies 

l i s t e d in Theorem 1 where B i s the n-dimensional Euclidean 

space with the cone S of nonnegative coordinates and S ^ =* 

= i ^ c-i» (*2 , - # • '^t? : 0 ~ Q i ~ * °°} • This completes the proof. 

Now, l e t us put I - 1 0 , 1 3 , B̂^ ^{xeB^: l i x l l ^ r l for 

i a 1 , 2 , . . . ,n and B » B-̂ x B 2 . x . . . x B n . Let f̂  ( i =- 1 , 2 , . . . 

. . . , n ) be a bounded continuous function from I x B into E^ 

such that sup { il f ^ t ,x) it ±i( t ,x ) £ I x B } £ r , and 

o 6 i ( f i C l x X J ) ^J^ \A^J^O f ° r any subset X = X ^ X - x 

x . . . x X R of B with XjCB,. 

By (-*-) we s h a l l denote the problem of f ind ing the s o l u ­

t ion of the system of d i f f e r e n t i a l equations 
x i = f i ^ t * x i , x 2 , # # # fX-j) ( i - 1 ,2, . . . ,n ) 
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sa t i s fy ing the i n i t i a l cond itions x^O) » £)̂  (jb.̂  denotes? 

the zero of E^) for i = l f 2 , . # # f n . The following theorem 

can be deduced from the above r e s u l t : 

Theorem 3 (cf. [173) . Suppose that 

i
O for l ^ i ^ n - 1 and l ^ j ^ n with j + i - M ; 

(n - i • l ) " 1 for l ^ i ^ n - 1 and j = i+1; 

a.» for i = n and 1 £ j & n 

and q = . -2 ((n — j +• 1)!)"" a . t < l . Then there e x i s t s a s o l u -
?r"*" *J 

t ion of problem (+) defined on I . 

Proof. Let us denote by C(IfE.|) the space of continu­

ous functions from an interval I to Ej,, with the usual sup— 

remum norm III • III ̂  and the measure of noncompactness oC4» 

Moreover, l e t KA be the se t of a l l functions g in C(I fE i) 

such that g(O) == t^ and l lg(t) - g(s) l l . , -£r | t - s i for t f s c l f 

and l e t us put K = K^xiLx . . . ^ I L . 

Define a continuous mapping F ~ ^F^F^%... ,Fn) as f o l ­

lows: 
r t 

( F i x ) ( t ) = J f i ( s , x ( s ) ) d e for x in K. Assume that 

X « Xj* X^x . . . x X n with X j ^ c ^ . By the integral main-value 

theorem we have 
rt 

J f i ( s , x ( s ) ) d 3 € t - c o n v K f i ( s , x ( s ) ) : 0 - 6 s ^ t } ) 

for x in X. Hence 

sup, oC.il f f, ( s , x ( s ) ) d s : x € X i ) 4* 
tel 1 'o x 

£ o 6 i ( f i [ I x U ^ x m : x e X i J ) * 
ft%> 

.2 - ^ k i j ^jCUЧlXjШex^XjJ) 
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and, using the Ambrosetti lemma (C1J, Lemma 2.2°) , we obtain 

oGic
i({F4x::xeX$) == aup_ oC A -f J f 1 ( s ,x (s ) )ds :xe X}) £ 

" # > k i j ^ j ^ ^ ^ U ^ c X j i ) . 

" ^ k i J B&1 ^ j « x j ( t ) : x J € X J l ) « 

The matrix L = C kj*.] is auch that the matrix 1 - L has 

the form 

- k-12 0 

k23 

0 

0 

0 

0 

- k, 

0 

- k„ 

*П-1,П 

1 - k„ 

with k. 

nl
 Łn2 ~nЗ

 Łn,n-1 A ~nn 

-1 
i i+1 = ( n " i * ̂  f o r 1 ~ i--1""1 a n d kni s ai f o r 

la.i^n# Since det (1 - L) = 1 - q>0, ao L haa spectral ra­

dius less than 1. Consequently, by our result there exists 

x° * (x°,x|,...,x°) in K such that x£(t) = (FjLx
0)(t) (i » 

=• 1,2,..., n) for t in I. 

4« Final remarks. Let I, E = E, , B = B^ and C(I,E) be 

as in Theorem 3. We follow here the terminology of £3.1. De­

note by /B the measure of weak nonccmpactness on E. Assume 

that f is a weakly-weakly continuous function from I x B in­

to E, II f(t,x)Hi. r on IxB, and (& (f [I <Xl)£ k * /3 CX> for 

every subset X of B. 

We study the Cauchy problem for the equation x^ * f(t,x) 

(here x^ denotes the weak derivative) applying the method of 
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Euler polygons. Using this method we prove that if E is we­

akly sequentially complete, then there exists a weakly dif­

ferent! able function x in C(I,E) such that x(0) = 0 and 

x^(t) = f(t,x(t)) for t in I (see C3J and [16.]), moreover, 

the set of weak solutions of our problem is compact and con­

nected set in the space C^djE) of weakly continuous functi­

ons from I to E endowed with the topology of weak-uniform 

convergence. Further, we obtain a theorem on the existence 

of extremal weak integrals and a theorem on continuous de­

pendence of extremal weak integrals on initial data. The i-

dea of the above results is contained in [12.1 - tl43 and 

1171. Next, for the convenience of the reader we sketch a 

proof of the first of these results. 

First, applying an argument analogous to C41 or C17J we 

conclude that there exist some h and a weakly compact set X 

such that XQ = Qi^^j^^-conv (fCJxXQl) with J =- C0,h3cl. 

Denote by S e (e >• 0) the set of all functions v in C(J,E) 

having the following properties: v(0) = 0 , il v(t) - v(s)l.£ 

*kv\t - s| for t and s in J, sup II v(t) - J f(s,v(s))dslke 

(here the integral being taken in the weak Riemann sense), 

and v(t)€ 0^^i^ #conv (f CjxX0l) for t in J. 

We call a polygon Euler line for our problem a function 

v e : J — > B ( O ^ e ^ h ) defined in the following manner: ve(t) = 

= J0 for O^t * £ , ve(t) == ve(t±) • (t - ti)f(ti,vfCti)) for 

tĵ-*-*t ̂ -t±4.1> where t± * 16 with i =- 1,2-,... . We prove 

that for n^l there exists an Euler polygon line v.^ such 

that v^ & $i/n whenever 0 < U^^o^^* -?urther» modifying 
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the proof of Szufla [18.3 one can prove tha t the s e t S, , i s 

connected in CWCJ,E). For u c s L ( the closure of \ / n in 

CW(J,E>) we have u t J ] c X 0 , and there fore SW/ i s compact in 

C ^ A J J E ) . Consequently O ^ i / n * a a n o n e m P*y compact and 

connected subset of CW(J,E), whence our a s s e r t i o n fol lows 

e a s i l y . 
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