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ON MEASURES OF NONCOMPACTNESS IN TOPOLOGICAL
VECTOR SPACES
Bogdan RZEPECKI

Abstract: In this paper we give some axiomatic concept
for measure of noncompactness which is useful in applicati-
ons to the finite or infinite system of equations. In parti-
cular, fixed point theorems of Darbo type (cf.[5]) are proved.

Key words: Fixed point, measure of noncompactness, spec-
tral radius, system of ordinary differential equations.

Classification: 47H10, 34G20

1. 1 duct . Let L(X) be the algebra of continuous
linear operators from a normed space (X, Il -)l ) into itself
with the standard norm J+) , and let r(A) (=m.]33mc§: S )
be the spectral radius of AecL(X). It is known (see [9]) that
for A in L(X) and € > O there exists a norm i« ll; on X e~
quivalent to ll«}l and such that KAl (=sup{liaxl, :
tixig & 1) £ +rla).

This note had been inspired by the above result. We pre-
sent an axiomatic approach to the measure of noncompactness
of sets and establish theorems of Darbo type (cf.[5]). In
particular, s fixed point result for a system of k-set cont-

ractions (cf.I5]) is proved. Some applications are given.
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2. Mgin theoremg. For an arbitrary bounded subset X of
a Banach space M, the measure o¢(X) of noncompactness of X,
introduced by K. Kuratowski, is defined as the infimum of all
€ > 0 such that there exists a finite covering of X by sets
of diameter %< £ . (For properties of Kuratowski function oc ,
see e.g+ [7] or [9].) There are some other definitions of me-
asure of noncompactness (cf. [15)). Next, we give some axio-
matic concept which is useful in applications to the finite
or infinite systems of equations.

Throughout the rest of this section E will denote a Haus-
dorff locally convex topological vector space. For subset X
of B, we shall denote their closure by X and their closed con-
vex hull by conv (X), and FIX] will denote the image of X un-
der a self-map F of E.

Definition. Let B be a Banach space and let S be a cone
in B generating the partial order "S’ Assume that S,, is so-
me set containing S. In S,, we introduce the relation £ by

X, Y€ S and x‘.‘-s Y
X<y means{ X, y€S,, S and x = y;

x€S and ye S, S,

We call a function @s:z‘—-»sw (2% denote a family of
all nonempty subsets of E) an S-generalized measure of ﬁoncom—
pactness on E if for every point x in E and every subsets X,
Y of E we have (1) @s(Xu{x}) = &s(x), (2) if XcY then
QSCX)f-&s(Y), and (3) if Pg(X) =¢ (P denotes the zero of
B) then X is relatively compact subset of E. If B is an Euc-

lidean space with the cone § =[0,0) and S,,=[0,+001, then
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our function @s be called a generalized measure of noncom-

pactness on E.

Theorem ). Let K be a nonempty convex closed subset of
E and let <I>s be an S-generalized measure of noncompactness
on E such that $o(K)eS and PglEomv X) = Qs(x) for each
subset X of K. Let A€ L(B) be an operator with the spectral
radius less than 1 and the property that ALS1c S. Assume,
moreover, that F is a continuous mapping of K into itself and
$(FIX1) £ &( (X)) for each subset X of K. Then the set of
fixed points of F is nonempty and compact.

Proof. Suppose that X is a subset of K such that
b (FIX1) = (X). Then F(X)€S and Pg(X) £A((X));
thus & (X)<A"($(X)) for n = 1,2,... . Since the equation
¥ = Ay has exactly one solution and A“(és(x)) —> 0 a8 n —>
~—> c¢ (cf. Th. I.2.2.9 in [11]), we conclude that
- @s(x)es and therefore $(X) = f. Thus X is relatively
compact,

Let us put X, =4x;:m = 0,1,...} with x, in K and x =
= Fx,_; for nz1l. We have focl( and $g(X)) = O(FIX ).
Since Xc is compact and F maps Xo into itself there exists a
nonempty subset Z, of X, such that FIZ) = Z_ (see [2], Th.
vI.1.8).

Now, let 1 denote the class of all subsets V of K such

that Z cV, conv (V) =V and FIVICV. We have K 7 and
¢onv (FIV1} & V¥ whenever V € ¥ ., Further, put Vo= MNAV:
:Ve V% . Then Vo eV , and we get V = conv (FLV ]). Con-

sequently F is a continuous mapping of the convex compact Vo
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into itself and by Schauder-Tychonoff fixed point theorem,
F has a fixed point. This finishes the proof.

Theorem 2. Let @ be a generalized measure of noncom-
pactness on E with the property that condition (1) is repla-
ced by (17): Wf;1 X, is nonempty compact whenever {X : n =
= 1,2,...} is a family of nonempty closed subsets of B such
that X € X, for nZ1 and $(X ) —> 0 as n —> 0o . Let K be
a nonempty convex closed subset of E, @(K)< oc and
¢ (conv X) = ®(X) for each subset X of K. Assume, moreover,
that F is a continuous mapping of K into itself and
R (FIX1) 2 pl H (X)) for every subset X of K, where p is a
right continuous function on [0,cv) with p(t)<t for t>O.
Then the set {xeK: Fx = x} is nonempty and compact.

The proof of this result, although more difrficult, re=-
sembles that of Darbo theorem (cf. Th. IV,3.2 in [9]) and
therefore will be omitted.

The above result has interesting applications, whose ba-

sic ideas are illustrated by the examples below.

Exgmple 1. First, we consider a "discrete measure of
noncompactness" J” on our space E with the weak topology
S (E,E*). Define

-0, 1ff X is G(E,E¥)-relatively compact;
o"(x) ={

1, iff X is not & (E,E¥)-relatively compact
for subsets X of E. Obviously, o is monotone and the assum-
ption (1) is satisfied for & = J' . Therefore from the abo-~
ve theorem we deduce a fixed-point result whenever all boun-

ded sets of E are S(E,E¥)-relatively compact. More precisely,
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we get the following result:

Suppose K is a nonempty convex closed bounded set in E,
If E is a semireflexive space and if F is a weakly-weakly
continuous mapping (i.e., the topology on both the domain
and the range is the weak topology G(E,E*)) of K into it-
self, then the set of fixed points of F is nonempty and
& (E,E¥*)-compact.

Example 2. Here we define a measure of weak noncompact-
ness on a Banach space M (see De Blasi [ 61): Denote by U the
norm unit ball in M. The measure of weak noncompactness [3(X)
of a nonempty subset X of M is defined as the infimum of all
€ > O such that there exists a weakly compact subset C of M
with Xc C + € U.

The functions o¢ and (3 are examples of generalized me-
asures of noncompactness with the properties listed in Theo-
rem 2. In particular this theorem yields the following corol-
lary:

Let M be a Banach space, let K be a nonempty convex clo-
sed bounded set in M, and suppose F is a3 weakly-weakly conti-
nuous mapping of K into itself such that B (F(X1) £ p(fB (X))
for every subset X of K and with a function p as in Theorem
2. Then the set of fixed points of F is nonempty and weakly

compact.

Example 3. To conclude this section we give an example
showing how generalized measures of noncompactness can be u-
sed to obtain a result of Nashed and Wong type (cf. e.g. Th.
2 in [101).
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Let B be a Banach space with the measure of noncompact-
ness o« , and let K be a nonempty convex closed bounded sub-
set of B. Suppose we are given: L - a linear continuous map-
ping of B into itself such that some iterate I ¢ it 1s a
k-set contraction on K (i.e., o (L*MX1) <& k - < (X) for each
subset X of K, and £ - a continuous mapping from K into a
compact subset of B.

For a bounded subset X of B, $(X) is defined as
2 /0 (1371x)); ip the dlameter of X is infinite,
then let $(X) be equal +cv . It is not hard to see that §
is a generalized measure of noncompactness on B such that
®(conv X) = $(X) and $(X + ¥) < P(X) +» P(Y). Now for any
subset X of K, §({Lx + fx:xeX3) < ¢ (LIX)) =
=5 =1/ (131312 LY/D§ (%) and therefore, we have the

v=1
following corollary to Theorem 1:

If k<1 and Lx + fxe K for each x in X, then the equa—-
tion Lx + fx = x has a solution in K.

3. A ;] ) d 1 tions.

In this part we assume that (Ei, Wetly) 4 =1,2,000,n) 18 @
Banach space with the measure of noncompa ctness cci, and non-
empty comvex closed bounded subsets K;.

First, we prove a fixed point result for a system of k=-set
contractions:

Let Fy (4 =1,2,...,n) be a continuous mapping from

K = K;2<Kyx oo <K into Ky such that o (FyTX) = X 000 xn])é

n
é};q ky joty(Xy) for each gubset Xj of K; (3 =1,2,c..,n).

Agsume, moreover, that [k“] (1, =1,2,¢..,n) is a matrix
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with the spectral radius less than one (i.e. equivalently

1=k, - Ky eees - Ky
-k 1 - -k
21 ko 21 | o
- kg Sk eeee 1=y

for all 1 = 1,2,...,n. Then there exists a point (xy,%5,...
...,xn) in K such that xy = Fi(xl'XZ""'xn) for i =1,2,...
eeeyNe

To prove this claim let F = (FI’EZ"“'Fn)’ and let L
denote the linear operator generated by the matrix [kijl.
Let us put g(X) = (&, (X)), X,(X,),en., Kp(X)) for each
subset X = X)X X, x...x X of E = E) < sz «.e xE , where
Z,(X,) 1s equal to oy (X,;) or +co if diameter of X, is fi-
nite or infinite, respectively. Then @s is an S-generali-
zed measure of noncompactness on E which has the properties
Iisted in Theorem 1 where B is the n-dimensional Euclideam
space with the cone S of nonnegative coordinates and sw=
=40q1+9p,++,q,):0€q32 + 0}t . This completes the proof.

Now, let us put I =[0,1], By = {x€Ey: lixly«r} for
1=1,2,...,n and B = Bj>< B, <...xB.. Let £; (1 =1,2,...
«s.yn) be a bounded continuous function from IxB into Ey
such that sup { ¥ £;(t,x) il ;:(t,x)eIxBI<r, and
oy (24 [T=XD) 2, F Ky jocy(X;) for any subset X = X <X,
x...xxn of B with XJcBJ.

By (+) we shall denote the problem of finding the solu-
tion of the system of differential equations

xg = £30(t,X1,Xp9000,%,) (1 =1,2,...,n0)
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satisfying the initial conditions xi(o) = di (bi denotes
the zero of E4) for i =1,2,...,n. The following theorem

can be deduced from the above result:

Theorem 3 (cf. [17]). Suppose that
O for 121i€n-1 and 14 j£n with j4i+l;
ky=4 (h-1+ 1)7! for 1214n-1 and j = 141;
ay for i =n and 1£ j4n

and q =;.:b£=1 ((n =g+ 1)!)-1a3<1. Then there exists a solu-
tion of problem (+) defined on I.

Proof. Let us denote by C(I,E;) the space of continu-
ous functions from an interval I to Ei' with the usual sup-—
remum norm Il Il and the measure of noncompactness o(.*i.
Moreover, let K; be the set of all functions g in C(I,E,)
such that g(0) = f; end llg(t) - gle) lj&rlt - sl for t,se1I,
and let us put K = Ky x K2>< eee XK e

Define a continuous mapping F = (Fl,Fz,...,Fn) as fol-

Iows:
t
(Fyx)(t) = fo £;(s,x(s))ds for x in K. Assume that

X = X< X% e0ex Xy with X3CK;. By the integral main-value
theorem we have
t
fo £y(s,x(s))ds e t-conv (4£;(s,x(s)):0484t})

for x in X. Hence

sup, o (-lftf (s,x(8))ds:x X&) £

tel 1 “Jo 71T

< d’i(fi[I UL x[T):xex$]) <

é_}g,' k; 4 obJ(U{ xJ[I'] xj€ X‘j})
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and, using the Ambrosetti lemma ([1), Lemma 2.2°), we obtain

* . t .
oci({Fix:xe X3) = sup oc 4 ( -fj'; £i(s,x(8))ds:xe X3) £

I

n

"3
=j§4 kiJ sup | ocj({xj(t):xje Xﬁ) =
o )

The matrix L = (k;4] is such that the matrix 1 - L has

the form
- _ -
1 "12 o} covse
[¢] 1 - k23 cecee (o] 0
0 0 (o] cosee 1 - kn—l,n
- knl - knz - kn3 sesees = kn,n—l 1l - knn J

th =(n-1+171 1414n-1 and =

wi 1,1+1 n for i4£n-1 an kni ay for
1£i<n. Since det (1 = L) =1 - q>0, so L has spectral ra-
dius less than 1. Consequently, by our result there exists

(Fyx®)(t) (4 =

x° = (xf,xg,...,xg) in K such that xg(t)

= 1,2,eesy n) for t in I.

4. Finagl remgrks. Let I, E =E,, B =B; and C(I,E) be
as in Theorem 3. We follow here the terminology of [31. De-
note by f3 the measure of weak nonccmpactness on E. Assume
that £ is a weakly-weakly continuous function from Ix<B in-
to B, N £(t,x){ < r on IxB, and R(£lIxXN)<k -3 (X) for
every subset X of B.

We study the Cauchy problem for the equation x, = f£(t,x)
(here x:, denotes the weak derivative) applying the method of
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Euler polygons. Using this method we prove that if E is we-
akly sequentially complete, then there exists a weakly dif-
ferentiable function x in C(I,E) such that x(0) = @ and
x;(t) = f(t,x(t)) for t in I (see [3] and [161), moreover,
the set of weak solutions of our problem is compact and con-
nected set in the space GW(I,E) of weakly continuous functi-
ons from I to E endowed with the topology of weak-uniform
convergence. Further, we obtain a theorem on the existence
of extremal weak integrals and a theorem on continuous de=-
pendence of extremal weak integrals on initial data. The i-
dea of the above results is contained in [12] = [14] and
[171. Next, for the convenience of the reader we sketch a
proof of the first of these results.

First, applying an argument analogous to [4] or [17] we
conclude that there exist some h and a weakly compact set Xo
such that X =D£_\£éhfl-conv (£Ld=<X 1) with J = [0,hlcI.

Denote by S¢ (€ > 0) the set of all functions v in C(J,E)
having the following properties: v(0) =@, il v(t) = v(s)li <
<r|t - 8] for t and s in J, .fin?]“v(t) - J:f £(s,v(s))dslice
(here the integral being taken in the wesk Riemann sense),

and v(t)e D:\{&tﬁ-conv (f[JxXO]) for t in J.

We call a polygon Euler line for our problem a function
ve :J—>B (0 <e <£h) defined in the following manner: vg(t)=
=0 for 0£t <€ , v (t) =v (ty) + (¢t - ti)f(ti,vs(ti)) for
tyet<t .y, Where t; =1 withi =1,2,... . We prove
that for nZ1 there exists an Buler polygon line Vs such

that v, & Sy/p whenever 0 < 7 <7 (n). Further, modifying
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the proof of Szufla [18) one can prove that the set sl/n is
connected in C,(J,E). For uegq/n (the closure of Sy, in
C,(J,E)) we have ulJlcX,, and therefore'§zyn is compact in
c'(J,E). Consequently q531?%&n is a nonempty compact and
connected subset of c'(J,E), whence our assertion follows

easily.
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