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FINITELY GENERATED RELATIONS AND THEIR APPLICATIONS TO
PERMUTABLE AND n-PERMUTABLE VARIETIES
Ivan CHAJDA and Jaromir DUDA

Abstract: The present paper is a continuation of the
systeratic study of ccmpatible binery relations. This part
deals with finitely generated compatible relations on uni-
versal algebras, their relationship and connections with
perrutability and n-permutability (n>1) of congruences. Va-
rious medifications and simplifications of methods frequent-
ly used in the theory of Mal cev conditions, polyncmial con-
ditions etc. are derived.

Key_wordg: Algebraic function, congruence, compatible
diagonal relaetion, Mal cev condition, polynomial, polynomial
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Clasgification: 08A25

The objective of this paper is to give connections among
some recent and old trends in universal algebra from the
point of view of principal congruences. Since various diffe-
rent ways for these investigations are used by many authors
we shall first try to rind a common base for their results
by means of a detailed study of compatible binary relations.
This approach enables us to obtain also scme new characteri-

zations of varieties of algebrss.

1. Pgraphrases_of_ the Mal ‘cev lerma. Characterizations
of a principal corgruence ®{a,b) for scre elements a, b of

an algetrs Cl play an important role in universal algebra,
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in particular in the theory of Mal cev conditions, polyno-
mial conditions etc. In the original Mal “cev description
of ©(a,b), see [10), there appears the set-theoretical con-
dition tcpi(a), 43(b)} = fzi’zi+14; however, such conditi-
on is not too convenient for purely algebraic purposes, na-
mely for deriving identities. Thus, the aim of this section
is to remove the above mentioned set-theoretical equality;
it was first done by G. Grstze; {2), further possibilities
may be found in [13). Making full use of the connections a-
mong congruences, tolerance and compatible diagonal relati-
ons we obtain Gratzer s original result and, further, we gi-
ve here a new purely algebraic description of ©(a,b).

Let (= (A,F> be an algebra. A binsry relation C on
is called gomppatible if it satisfies the Substitution Proper-
ty with respect to all operations from £, in other words, C
is a subalgebra of the direct product ¢ < (L . A binary
relation R on 1is called diaggnal relation if <aAE-R where
aﬁ}=-{(a,a>;ae A}. By a tolerance on U4 is meant a compa-
tible diagonal and symmetric binary relation on O . Obvi-
ously, all tolerances as well as all compatible diagonal re-
lations on Ul form complete lattices with respect to the in-
clusion, see e.g. [5]. Consequently, for sny S< AxA there
exist the least compatible diagonal relation or the least
tolerance on (1l containing S, denote it by R{S) or T(S), res-
pectively. Without risk of confusion we will use R(a,b) to
denote R({<a,b?}) and R(<ay,b)7,...,< 8, ,b)) to dencte
R({<ay,by>,...,<ap,b 71 ); analogously for T(a,b) and
T(<ay,by),eeey <8070
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We begin with the following two lemmas; they will be

useful in the sequel.

Lemmg 1. Let CU. be an algebra and let X,¥,8y,...

ese18nybyy000,b, be elements of UL . Then

(a) <x,y><R( {ay,by75.00y <a,,by) if and only if

there exists an n-ary algebraic function ¢ over UL such
that x = op(al,...,an), y = qo(bl,...,bn)(briefly: {X,y) =
= (@x=xg)( 819D ye ey (an,bn7));

(b)  Ix,y>eT(L 81,b17 .00, <an,bn)) if and only if the-
re exists a 2n-ary algebraic function y over UL sueh ‘that
x = ¥Wlay,eeeya,byyeeeydy)y vy = Y (0yyeeeydpadyseeeyay)
(briefly: {(x,y> = (yx y)(< al,b]_?,..., {agybp?y (bl,al>..

ceey <bn,8n>))t

For the proof, see [5].

Lemmg 2. Let (/L be an algebra and let a, b be elements
of UL . The following conditions hold:
(a) B(a,b) =.n\21w T(a,b) 0 ... c T(a,b);
n-times

(6) 0B(ayb) = U R(a,b)o R(b,a)c...cRia,bd),
m< N
(2n-1)~times

where o denotes the relational product.
The proof is straightforward and hence omitted.

Theorem 1. Let ¢l be an algebra and let a,b,x,y be ele-
ments of UL . The following conditions are equivalent:

(1) < x,y> e B(a,b);

(2) BINARY SCHEME: There exist and integer n>1 and
binary algebraic functions [js+.., 3, over (l such that

x = (3,(a,b)
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Py(b,a) = 34,,(a,b) for 1 £i<n

y = ﬁln(b,a);

(3) GRATZER SCHEME: There exist an integer n21 and
unary algebraic functions °co"""£2n-2 over Ol such that

x = oL a)

e (D) = oL (b)

21 21+l for 0£4i4n - 2
r62i*1(8) = ”‘21*2(8)

¥ = ppapib).

Proof. The equivalence (1) (2) follows directly
from Lemra 1(b) and Lemma 2(a); the equivalence (1) <=> (3!
(the original Gritzer's result, see [2; p. 3421) is a conse-

quence of Lemma 1(a) and Lemma 2(b).

Remark 1. Lemma 2 gives rise to a problem: under which
conditions does T(a,b) = R(a,b) o R(b,a) follow? The subse-
quent Theorem 2 gives a solution for varieties of algebras

in the form of polynomial conditions.

Theorem 2. Let V be a variety. The following conditi-
ons are equivalent:

(1) For each UL & V and every two elements a, b of 0L,
T(a,b) = R(a,b) o R(b,a);

(2) For every pair of n-ary polynomials s, t and of
(n + 1)-ary polynomials p, q there exists an (n + 2)-ary po-
lynomiasl r such that: if p(t(xl,...,xn) ,xl,...,xnl =
= q(t(xl,...,xn), X]3+e0yX,) then
p(s(xl,...,xn),xl,...,xn) . r(s(xl,...,xn), t(xl,...,xn),

xl,...,xn)
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qle(xyyeeesXp) )X y0ee,Xy) = Plt(xy00eyx), 8(x),000yx)),
XypeeesXp).

Proof. Clearly T(a,b)< R(a,b) o R(b,a) for every algeb—
ra {, and each a, b of I . Hence, we shall proceed only to
prove the equivalence of (2) with the converse inclusion:

(1) = (2). Let OL =Pn(xl,...,xn) be the free algebra
in V with free generators XyseessXy and let a, b be elements
of O . Then there exist n-ary polynomials s, t with a =
= 8(Xy,0009%,), b =tlx),.00.,x ). Suppose {c,d>eR(a,b)oR(b,a).
By Lemma 1(a), there exist (k +l)=-ary polynomials p, q of V
such that

¢ = pla,uyyees,uy)

Pb,uysece,uy) = qlb,vy,eee,v))

d = qla,vyyeee,v ).

Since Of = F (x;,...,x,), we can suppose k = n and vy = uy =
=x4 for 1£i%n, i.e. we get

¢ = plalxy,eeeyx), xl,...,xn)

p(t(xl,...,xn),xl,...,xn) = qltlxy,eeesxp) )Xy 5000 ,x,)

d = qle(xyyeeeyxy ) Xy 0ee,xy)e
Further, {c¢,d”¢ T(a,b) yields (see Lemma 1(b)) the existence
of a binary algebraic function @ over (£ with

¢ =g (ab), d = (b,a).

Consequently, there exists an (n + 2)-ary polynomial r of V
such that ®(wy,w,) = r(w),w,,X;,e..,x,) and, by replacing
a,b,c,d by these polynomials, condition (2) immediately fol=-
lows. '

(2) % (1), Let e V, a,b,c,d be elements of (£ and
<¢,d’ e R(a,b)o R(b,a). Then < c,eye R(a,b) and <e,d)eR(b,a)

for some element e of (£ , i.2., by Lemma 1(a), there exist
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polynomials P, qQ of Ol with

c = p(a,zl.-..,zk)
e = p(b,zl,-.,,zk) = q(b,vl,...,vm)
d = q(a,vl,...,vm).

By applying the hypothesis, we get an (n + 2)-ary polynomial
r of V such that n =k + m + 2 and

Pla,2yseesy2) =Tla,b,8,b,2) 500092 V))e00,7)
qla,vyseeesVy) =T(b,a,8,D,2) 500032,V 000,V ).

By Lemma 1(b), we conclude <c¢,d>&T(a,b).

Regark 2. Although the condition (2) from Theorem 2
looks rather hard to be satisfied, it does hold in every per—
mutable variety. This follows directly from the well-known
fact that congruences, tolerances and compatible diagonal re-
lations coincide on any algebra in a permutable variety, see

[12], [ 4] and slso the following Theorem 3.

2. 1 energted compat d ngl relatj nd
n-perput e riet . Several important characte-
rizations of n-permutable varieties (n>1) were derived by
J. Hagemann and A, Mitschke. Making full use of their results,
see [4] or [3]1 , we get the following description of n-per=-

mutable varieties in terms of finitely generated relations.

Theorem 3. Let nZ1l be an integer. Then for any variety
V the following conditions are equivalent:

(1) V has (n + l)-permutable congruences;

(2) For every (L € V and each two elements a, b of (1,

8(a,b) = R(a,b)o ... oR(a,b) .
n-times
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Proof. (1) =>(2). The inclusion O (a,b’2R(a,blo ...
... 0R(a,b) is clear. Prove the converse inclusion. By [4],

(n + 1)-permutability of V implies R *=Ro ... R and
—
n-times
Re...oR ¢ Rc,.., cR for every compatible diagonal rela-

(n +1)-times n-times
tion R on (te V, Hence Re ... °R is a congruence relation

n-times
on Ol , In particular, R(a,:):i;{;éj._ﬂ_(p,h) is a congruence

on Gl collapsing the pair <a,b) thus ©(a,b) =
= R(a,b) o ... o R(a,b) and (2) is proved.
PR
n-times
(2) = (1). Let !'Z(x,y) be the free algebra of V with
free generators x, y. By hypothesis, {x,y> e B(y,x) =

= R(y,x)° ... » R(y,x) holds, i.e. there are elements
| . SEN—

n-times
8ypeecrBpy € rz(x,y) such that x = &), y = a,) and

(ai,a1+17en(y,x) for 1<i%4n. So, by Lemma 1(a), there exist
unary algebraic functions @j,..., ¥, over Pz(x,y) satiafying
<°1"1¢1> = (g4 <) y,x?) for 1£1i<n. Writing this sepa-
rately in each variable, we get

x = g 4(y)

qi(x) = 91’1(3/) for 144i<n

y = Cfn(x).
Since Gjy,...» G, are algebraic functions over F,(x,y), the-

re exist ternary polynomiasl qj,...,q, of ¥ with 91(t) =
= qy(x,t,y), 144<n, and

x = ql(x,y,y)

qi(x,x,y) = qi*l(x,y,y) for 143z n

¥y = qplx,x,¥)3
i.e. we have the Mal ‘cev condition for (n + l)-permutable va-

rieties, see (4] or [3]), which completes the proof.
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By a guasiorder on an algebra (I is meant a compatible
diagonal relation on (& which is also transitive. Clearly,
also all quasiorders on (I form a complete lattice with res-
pect to the inclusion, see e.g. [5], thus there exists the
least one quasiorder on Ul containing the pair <a,b? of ele-
ments of (7 ; it will be denoted by Q(a,b). Similarly the
symbol Q((el,bl7,..., (an,bn)) denotes the least quasiorder
on (& containing the pairs <al,b1),..., {ap,b 7. It is easi-

1y seen that Q(a,b) = EQJR(a,b)o cee oR{g,b) ( = the transi-
N

n-times
tive hull of R(a,b)) and so, forming the countable disjunc-

tions of equivalent conditions from Theorem 3, we immediate-

ly get:

Corpllar « For a variety V, the following conditions
are equivalent:
(1) V is (n + 1)-permutable for some integer n=1;

(2) ©6(a,b) = Q(a,b) for any a,b € UL € V,

Following L6], an algebra (I is called Principsl Tolergn=-
ce Trivial (briefly: PTT) if 6 (a,b) = T(a,b) for each a, b
of Cl.

A variety V is PTT if each (Ll e V has this property.
Notice that the PTT varieties form a very important class of
varieties because it contains:

(i) all permutable varieties, see [12];

(ii) the variety of all distributive lattices, see [7];

(1i1) all varieties of p-algebras, see [91.

The PTT-property is essentially used in the following

Corollapry 2. Let nZl be an integer. Then for any vari-
ety V the following conditions are equivalent:
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(1) V is PIT and (n + l)-permutable;
(2) For each (le V and every a, b of UL,
T(a,b) = R(a,b) e ... e R(a,b).
n-times
Proof. (1) =» (2). By Theorem 3, 6(a,b) =

= R(a,b) o .._.:_ELa,b).
n-times )
Since V is PIT, we have ©O(a,b) = T(a,b) proving (2).

(2) = (1). Take (t = rz(x,y)ev. Since the tolersnce
T(y,x) is symmetric, we have {x,y>e T(y,x) and thus, by hy-

pothesis, {x,y>¢ R(y,x)e.... oR(y,x). However, as was shown

n-times
in the proof of Theorem 3, this condition implies the (n + 1)-

permutability of V.
Further, by Theorem 3, the (n +1)-permutability of V im-~

plies O(a,b) = R(a,b)e ':_:E—(j’b) for every a,b e UL eV,

n-times
Combining this equality with (2), we get 8(a,b) = T(a,b),

i.e. V is PTT and the proof is complete.

Remark 3. The Principal Tolerance Triviality and the
n-permutability (n=3) are independent conditions:

(1) As was noted above, the veriety D of distribati-
ve lattices is PTT; however, D is not n-permutable for any
nz2; see, e.g. [ 13, p. 79).

(2} The variety T of implication algebras, see L1],
is 3-permutable; this is shown in [41, [111 or [3; p. 3561].
It remains to prove that I is not PTT: Take the free algebd-
ra Fz(a,b) e I with two free generators a, b. Let us recall,
see L11, that this algebra is the grupoid
<{1l,a,b,ab,ba,(ab)b}, » > with the following operationsl
table:

- 49 -




. 1 a b ab ba (ab)b
1 1 a b ab ba (ab)b
1 1 ab ab 1 1
b 1l ba 1 1l ba 1
ab 1 a (ab)b 1 ba (ab)b
ba 1 (ad)b b ab 1 (ab)b
(ab)b 1 ba ab ab ba 1.

Further, it is well-known, see [1], [11], that eny im~

plication algebra <I, »> € I may be expressed as a join

semilattice (I, v > where avb:x (ab)b and, conversely,

ab = (a»'b)g (= the complement of avb in the principael fil-

ter (b) of <I,v> ). In particular, the following diagrem

corresponds to the above mentioned implication algebra

Fy(a,b):
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Now, consider the tolerance T(a,ab) on ?Z(a,b). We ha-
ve
{a,l) € T(a,ab) since <a,1> =<ab,a> {a,a”;
{1,b> ¢ T(a,ab) since {ab,bad = {(ab)b,(ab)b> <ab,a”,
<(ab)b,b» = (ab,bad> {b,b> ,
{1,b) =<a,1” <{(ab)b,b) .
Suppose T(a,ab) = O (a,ab). Then {a,1>, {1,b) € T(a,adb) =
= B(a,ab) implies {a,b> € B(a,adb), i.e. we get <a,b) €

€ T(a,ab), a contradiction.

3. Some chagracterizations of copgruence pergutability.
As was noted above, the relational equality 6(a,b) = T(a,b),
i.e. the PTT property, is a weaker condition than the permu-
tability of congruences in a variety of algebras. Neverthe-
less, for two (snd more) generating pairs of elements the

following Theorem holds:

Theorep 4. For a variety V, the following conditions are
equivalent:

(1) V has permutable congruences;

(2) ©8(<(a,b?, {b,e)) = T({a,b), <{b,c?) for each (Lc V
and every a,b,c of (l;

(3) Qf<a,b>, <{b,c?) = R({a,b>, {b,c?) for each U ¢ V

and every a,b,c of Ul .

Proof. (1)-—=> (2) and (1) = (3) follow directly from

H. Werner s Theorem, see [12].

(2) = (1). Consider the equality O8x,y, <y,z/) =
= T{x,y), {¥y,27) on the free algebra F3(x,y.z) in V. By the
transitivity of congruences, we get {(x,z’ ¢ T(<x,y/, <¥y,2/)
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and thus, by Lemma 1(b), there is a 4-ary algebraic functi-
on % guch that <x,z> = (6= & )Kx,y?, <y,z?, <y,x7, {z,¥)),
i.e. x = 3(x,y,y,2) and z = &(y,z,x,y). Since & is an al-
gebraic function over the free algebra F3(x,y,z), we get a

T-ary polynomial s of V with

x = 8(xX,¥,¥,2,%,¥,2)

z =8(y,z2,X,¥,X,¥,2)
But p(x,y,z):= s(x,z,y,y,X,¥,2) is the well-known Mal cev
polynomial (x = p(x,z,2z), z = p(x,x,z), see [10]), proving
the permutability of congruences.

(3) => (1). Analogously, the equality Q{(x,y>, <y,z)) =
= R({x,¥y7, <y,2?) on the free algebra Fs(x,y,z) yields
{x,z> € R(Kx,y?,<y,z7), and so {(x,z) = (T~ ¢)(Kx,y>,<{y,z>)
for some binary algebraic function < over F3(x,y,z). So we

have a 5=ary polynomial t of V with
tlx,y,x,y,2)

X

t(y,2,%x,y,2).

[}

z
Putting p(x,y,z):= t{x,z,x,y,2z), we again obtain the Mal cev

polynomial and (1) is thus proved.

Repar . The original strong Mal ‘cev condition charac-
terizing permutable varieties, see "10., is very simple and
useful for proving purposes if a given variety is permutab-
le. However, if we proceed to prove the contrary, this con-
dition is not too convenient. More suitable conditions for

such a case are those of the foregoing Theorem 4.
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