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INDISCERNIBLES IN THE ALTERNATIVE SET THEORY
A. SOCHOR, A. VENCOVSKA

Abgstract: In the paper we prove the existence of clas-
ses of i scernibles in the alternative set theory. These
results are used to constructions of endomorphic universes
with special properties.
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N

A cless of indiscernibles (of strong indiscernibles
respectively) is a class of natural numbers such that the-
re are no two finite increasing sequences of its elements
which can be distinguished using a set-formula without pa-
rameters (respectively with sets of small type as parame-
ters only). We show that no two finite increasing sequen-
cesa of elements of a cofinal class of strong indiscernibles
can be distinguished using a normal formula with semisets
of sets of small type as parameters only.

At the beginning of the first section we deal with the
existence of cofinal classes of strong indiscernibles. No
set-theoretically definable class can be a cofinal class

of strong indiscernibles (neither a cofinal class of indis-
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cernibles) and hence showing the existence of cofinal class
of strong indiscernibles which is a #’-class, we construct
such a class of the smallest possible complexity. Further-
more we show that every real (in particular analytical) co-
final class of indiscernibles is a class of strong indis-
cernibles.

The second section contains two applications. In the
alternative set theory an important role is played by endo-
morphic universes. There are natural characteristics of en-
domorphic universes e.g. the cut of all natural numbers o¢
such that every subset of the endomorphic universe of the
cardinality o0 is even an element of this endomorphic uni-
verse or' the cut of all natural numbers o such that every
element of the endomorphic universe of the cardinality o¢ is
even a subset of the endomorphic universe in question. The
necessary and sufficient conditiors for a cut to be the se-
cond characteristic of an endomorphic universe are known
(cf. [S=V 41). On the other hand, the first characteristic
was not yet seriously studied. In the paper we show that the
first characteristic cannot be naturally described from the
second one.

If A is an endomorphic universe then every set-formula
with parameters in A holds in the sense of & iff it helds
in the sense of V. We construct an endomorphic universe such
that the above mentioned equivalence holds even for seminor-
mal formulas with subsemisets of A as parameters.

The authors thank to P. Hdjek and P. Pudlék for dis-

cussions concerning indiscernibles in Peano arithmetic.
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§ 1. We use the usual notions and results of the book
[V]. In particular = (x) denotes the rank of x and Plec) =
={x; v(x) £ec? (cf. § 1 ch. II [V]). For every class C,
the symbol Sdc denotes the system of all classes of the form
{x; ?(xlf where ¢ 1s a set-formula of the language FLj (i.e.
with parameters in C). Elements of Sdy are called set-theo-
retically definable classes. Let GeSdo denote in the whole
paper a one-one mapping of N onto V (such a mapping is con-
structed in § 1 ch. IT LV1). The function G induces by the
natural way an ordering of V such that every set-theoreti-
cally defingble class has the G-smallest element. As usual,

the symbol P (X) denotes the class {x<S X;x & nji.

Theorem. Let Te Sd{a} be a function with dom(T) =
= Pn(S) & rng(T) €4{0,1}. If S is a proper class then there
is a proper class RCS such that Re Sdy,; and such that
T“Pn‘IR) is a singleton.

Proof. For n>1 we are going to define a function F by
induction (ef. § 1 ch. IILV1). For o < n-1 we define Ffe<)
as the G-smallest set of S=F"ocC »

Let Ffoc be defined (> n-1) and let

xobz{xes;(‘v‘ecl,...,dne )ty <ens <ot —>

n

—> T(4FCec ) yeee,Flec D8) = TR(C )y oue FCee 1), xP))E
be a proper class. Then for some ye X°°, the class

{xeX®; (¥t ,ee, L el <€ —>
— T({FCoty) eee,Floty 1),33) = TMHE(oe) ) yene,Flac 1) ,x3))5

is a proper class since otherwise for every f with dom(f) =

= Pn_l(oo) & rng(f) €40,1% there woulc te 3 so that
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(Vze X)) (T4Flaty),eee, Flec 1) ,2}) = flolyyeeey by y) —>
—» z(z)<fR)

and defining H(£) as the smallest 3 with the above describ-

ed property, H would be a function which is an element of

sd {8, end with dom(H) € {f; dom(f) =P _,(sc) & rng(f£)=40,13.

Hence rng(H) would be a set by the replacement schema (see

§ 1 ch. ILV]; more precisely, we use the formal replacement

schema which is a consequence of the formal axiom of inducti-

on - cf. the axiom A4 [S1]). This would contradict the assum-

ption that X% is a proper class. Therefore we are able to de-

fine F(o) as the G-smallest set y such that the class in qu-

estion is a proper class and y& F'oc .

For the function F we have defined by induction, the
class rng(F) is proper since dom(F) = N and F is a one-one
mapping. Moreover, in the definition of F we have used only
elements of Sd{'ﬂ and thence Fe Sd{a}.

Defining TAF(eCy),eue,Flee _1)3) =

= T({Fey),eee , Pl 1), Flac ;) + 1)) for every o<, <

n-1
< eee<oC,_) we get a mapping of Pn_l(rng(\F)) into {0,1} which
is an element of Sd{a}‘ Moreover, if RErng(F) is a class
such that &‘"pn_ltni is a singleton then T"P (R) is a single-
ton, too. Therefore we can finish the proof using the obvi-
ous induction w.r.t. n (the case n = 1 being trivial).

A class IS N is called a class of indiscernibles iff for

every set-formula g:(zl,...,zn) of the language FL and every
4

n of elements of I

two sequences e;< eee< ey and e£<...<e
we have @leyje..,ep) = 9’("{""":;)'

A class IC KN is called a class of strong indiscernibles
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1£f for every ec I, every set-formula @(zy,...,2z,) of the
language FLg (i.e. elements of e are admitted as parametres)

’ 4
and every two sequences e<@y;<ece<e and e<e;<...<ey

n
of elements of I we have @le;,...,ey) = ga(e]:,...,e;l).

Theorem. There is a class of indiscernibles which is
a fr-class and which is no semiset.

Proof. For every set-formula g:(zl,...,z } of the lan—

n
guage FL and every sequence X)<eee< Xy, Of elements of N we
define Tga ({xl,...,xn{) =1 iff 9(x1,...,xn) and

Tg, ({xl""’xn” =0 iff g (xl,...,xn). Evidently T? € sd
and dom('l‘? ) = Fn(N) for every set-formula ¢ & FL. Let <

be a fixed well-ordering of FL of type @ . By the previous
theorem there is a sequence of classes -fSc’, : @€ FL{ such
that for every two set-formulas ¢,y € FL we have Sqe Sdo&
&'ISm(SS, ), Ty "Pn(’S? ) is a singleton and ¢ < Yy —>

g sv.c.s? o The intersection of all classes S? where ¢ is
a set-formula of the language FL is a oy -class of indiscer-
nibles. This class is no semiset according to the last part
of § 5 ch. IILVD.

The previous statement can obviously be a little streng-
thened, namely for every set-theoretically definable proper
class RGN there is a class of indiscernibles ISR which is
a & -class and which is no semiset.

A class is real iff there is an indiscernibility equi-
valence (cf. ch. III LV1), such that the class in question
is a figure in this equivalence. We shall use the following

property of real classes.
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Theorem. Let X be a real class, «<< & N. Then there is
either a set u with ucX & u & o , or for each ¥ € N-FN
there is a set u2X with u & oc- ¥ .

Proof. By the last theorem of [V 11 we can suppose
that X is a figure in a totally disconnected indiscernibi-
lity equivalence £ . For the monad of the point x in this
equivalence we use the notation Mon* (x). Let {Sn;neFN§ be
a generating sequence of X , such that Sn is an equivalen-
ce for each n (see ch. III [V1). If there is a set xeX and
a set u such that u & o and uSMon* (x) then ucX because
X is a figure in £ and therefore the first possibility
holds. Suppose that Mon* (x) does not contain a subset u & o
for any xeX. We have Mon¥ (x) = N4 olx,n);ne FN§, where
o(x,n) =4{y; {x,y>€S,%. For x€ X there must be ne FN such that
olx,n) X < ; otherwise the classes Y, = {v;vA« & vSolx,n)l}
would form a countable descending sequence of nonempty set-
theoretically definable classes with empty intersection,which
is impossible. Put U, =40; o is an equivalence class in the

equivalence S ‘and 0 2 o} . Each u_ is finite because x

T
is compact and thus fer every ne FN there is ke FN so that
% ung k.o Furthermore, for each x € X there is ne FN
and o€ u, such that xeo, i.e. X cU{ Uun;neFN}. By the
axiom of prolongation, for each y & N-FN there is a set
u % 9> & such that Xcu.

Consequence. If X is a real class which is no semiset

then for every o there is a set u with u S~ o¢ & usy.

Theorem. If I is a real class of indiscernibles which
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is no semiset then I is a class of strong indiscernibles.
Proof. Let g;(yl,...,ym,zl,...,zn) be a set-formula
of the language FL and let e€I be given. By the last sta—
tement there is a set x SI-e so that (’Zem + 1)nSx. Hence
there is a set yS{<ej,eeeyepd ¢ x; e)< ...<ep} such that
((< €1yseesep > E Y &<e£,...,er;>e Y &< yeenge > F
Fdegye0e ,e!;> ) — (ep< e]:v e;l<el)) & yax2® +1. There-
fore there are ('el,...,en> and < s]t,...,er;) elements
of y such that € < € and such that the formula
(¥ ayseeesqpe @) (plqyyeeeyapy Eyreeey &) =
= @ (qqyeeerQps E79ee-y ©,)) holds.

’

n be two sequences

Let e<ej< see<ey and e<e£<...<e
of elements of I. Then there is a sequence 8] < eeo<ey of
elements of I such that e < ei' & e;l< e]t'. Since I is & class
of indiscernibles, we have (’Vql,...,qme e)(g’(ql,...,qm,
&yeeesey) = @ (Qyse--2Qpre] seeeye; )) and also
(Vayseeesqpe e)(‘?(ql”"'qm’el'""’er;) =
= g>(q1,...,qm,ei',...,er;')) from which the formula
CVql,...,qmee)(g;(ql,...,qm,el,...,en)ls
=@ (ql,...,qm,ei,...,el;)) follows.

Let us note that every & -class is a real class and the-
refore there is a class of strong indiscernibles which is no
semiset.

Lemma. Let I be a class of streong indiscernibles, which
is no semiset and let e< e, be two elements of I. Then for
every n € FN we have P(e+n)< Def, »

Proof. We have Def{e} s NC_—eo, because otherwise there

would be a set-formula 9’(21’22) of the language FL such that
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the formula (3!« ) @{«,e) holds and such that the number
(3 satisfying @ (3 ,e) would be greater or equal to ege
Let e'> (3 be an element of I. We would have (I ) (g (¢ ,0)&
& o > eo) and consequently (3ec)(@ (oc,e) & o> e’) which
is a contradiction.
Congider the number o€, = max{G-l(x); T (x) £ e*n}, whe-
re G is the mapping mentioned at the beginning. Obviously
o< L€ Def{ei, it means that << e, and thus

Ple+nds G"e, < Defeo.

The lemma has important consequences, e.g. the follow—
ing statement where Id denotes the identity mapping. (For no-
tions of automorphism and similarity see ch. VLV1,)

Thegorem. Let I be a class of strong indiscernibles,
which is no semiset and let e<e <e;<...<ey and
e<e < e£<...<e;l be two sequences of elements of I. Then
there is an autonorphisﬁx F auch that F Fle) equals to
Id P P(e) and F(<°1""’en> ) = (el',...,e,;) ‘

Proof. In (Ve 2] was proved a statement concerning pro-
longation of similarities to automorphisms, which says: for
a set u with P(u) 2u and a pair { x ,x) there exists an au-
tomorphism F such that FMu = Idl u and F(x) = x’ iff the
mapping (la P U {P*u);ne FN3) ui{ x",x)} is a similarity
(the symbol P™u) denotes the set obtained by application
of the operation of power-set n-times, starting from u). In
our case we know that (Ia °o)u{<°i""'°l;> v <eppeeere ?
is a similarity according to the fact that I is a class ef
strong indiscernibles. Thus the lemma implies that
txd PU{ PP(Ple));ne M u ¢ el',...,e,:> 18y eeesed} 18
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a similarity, too (since P?(P(e)) = P(e+n)).

Theoreg. Let I be a class of strong indiscernibles:
which is no semiset. Then for every two sequences
e<e,<e;<...<e, and e<e;<ei<...<e; of elements of I
and every formula &(2),e¢ey%5,2),0..,2y) of the language
FLp(o)s the formula Plegseccse Xyrece,X ) =
= g:(ei,...,e;,l'l,...,xl) holds whenever X,,...,X, are sub-
classes of Ple).

Proof. By the previous theorem there is an automorph-
ism F with FMP(e) = IaMF(e) & F*X; =X; & ... & F'Y =

=X, & Fley) = e{ & ... & Fle)) = e;. Further according to

n.
the second theorem of § 1 ch. V [V] we have
?(e{,...,e;,xl,. corXg) =g (Fley),...,Fle ) ,F"X),...,F*R )=

= @ (0)yeecren, Xy ee0,Xp)e

Thegrem. a) If I is an infinite class of indiscerni-
bles then for every e €I and every infinite x&I we have
e ¢ Defy_ g3 ond X ¢ Defy.

b) If I is a class of strong indiscernibles and if L
is an element of I such that I-eo is infinite then for eve-~

Ty e < eecl and every infinite xs—I-eo we have
O 4 DOL(1_so3)ue, 274 X Dely,, -

Proof. We are going to prove the statement b), the
first statement can be proved quite analogically. Let e,< e
and let @ (z,zl,...,zn) be a set-formula of the language
FLe such that there is a sequence e, <€)< ece< Oy of ele-—

(]
ments of I so that 9(9,31,...,9“) & (3 )@ (x,e9,000,0, )2

&e¢{ey,..-98,} & e>e . Since I-e  is infinite, there is

- 793 -



a sequence e < e£<....<:e; of elements of I and e € T so
that e%.e'>e° & (0<isn — (ey<e= e£<e = e;_< e’)).
Since I is a class of strong indiscernibles, we get
q:('e,ei,...,er;) &gz(e;ei,...,e;) & (31x) go(x,e]:,...,er;)
which is a contradiction.

If an infinite x ¢ I-e, would be an element of DefIueo
then there would be finite yQIueo so that xe Def‘y and
thus the G-smallest element of x-y would be an element of
Defy which is impossible as we have previously proved.

Consequence. If I is a real class of indiscernibles
which is no semiset then P(I)-Defy+0.

Proof. Since I is real, there is an infinite x<I; mo-
reover, I is a class of strong indiscernibles and therefore
it is sufficient to use the last statement.

The assumption that I is real is essential in the last
theorem as follows. Let A be an endomorphic universe which
is no semiset and such that A has only finite subsets (eve-
ry endomorphic universe which has a standard extension ful-
fils these properties; see LS-V 1]). Further let I be a sub-
class of A such that in the sense of A, the class I is a
class of strong indiscernibles which is no semiset. Then I
is no semiset and P(I) ={x;x<SI & Fin(x){ ¢ Defy. Let us re-
call that the formula ¢ A is obtained from the formula ¢
by restricting set-quantifiers to elements of A and class
quantifiers to subclasses of A. Furthermore let us remind
that if A is an endomorphic universe then the equivalence
@’A = §> holds for every set-formula of the language FLA.

Thus to prove that I is a class of strong indiscernibles
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(in the sense of V) it is sufficient to realize that the
equivalence ({V ql,...',qme eo)( ?(ql,...,qm,el,...,en)g
g>(ql,...,qm,ei,...,el;)))."=_=.

W

(v Qyreeesdpe eo)(\gp(ql,...,qm,el,...,en) =

L}

?(ql”"’qm’ei"“’ex;)) holds for every

i

’ 4
85181900 ¢9813€ 9008 € I.

§ 2. Let us consider two characteristics of endomorph-
ie universes PE(A) ={xc ;{V x & ) (x=sk—> x€A) &
& (Ax 2 c)(xcA)} and BP(A) =4« ; o«c € A}. We are going to
show that there is no normal formula v.y(z,Z) of the language
FL so that PE(A) ={x; y (x,EP({A))} (even if we suppose that
there is a set d with ALdl = V; the class ALd]l was defined
in [S=V 1]). For this purpose it is sufficient to construct
two endomorphic universes A, B and sets d, 4; with EP(A) =
= EP(B) & PE(A}+PE(B) & A[d] = B[4;1 =V.

Let BV be a fully revealed endomorphic universe such
that there is a set d; with Bld;] =V (by [S-V 1] there is
an endomorphic universe B'4V so that B'[d)] =V, every re-
vealment of B” fulfils our requirements and by [S-V2] a
revealment of B’ exists). The class PE(B) is fully revealed
and hence we can choose oc € PE(B)~FN. According to the first
section we are able to construct in the sense of B a s-class
I of strong indiscernibles. Let EP(B) €« B3 & B and let us cho-
ose e,eo,deB such that in the sense of B, we have
{ejejudsI-p &dR« & (Ve'e d)(e <e'< e,); such a
choice is possible since I is in the sense of B a real class

which is no semiset. Thus the formula d<B follows from the
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assumption oc € PE(B)< EP(B). Furthermore, by the first sec-

tion we have d4 Defy . and hence d & Defﬂu dufe since

Def{sudu;(eoi E—Defeul. By [Ve 2] the following theorem holds:
If x, d” are sets such that d” e U Def -Def, & x €Defy (41
then there is an endomorphic universe A with Ald7=V &
& A’¢ A & xcA. Putting d” = d and x = Budufe,} we see
that the assumptions hold since x = (3 v du-{eof) €
< Def{ﬂ-l,eo,d}gDefxu{d}' Hence there exists an endomorphic
universe AcCB so that Aldl =B &3 n BSA & dS A, The class
A is an endomorphic universe (in the sense of V) and more-
over AL{d,d;}] = (ald))[d,]1 =BLd;] =V (cf. [S-V 11). It
is EP(A) = EP(B) because EP(B) ={y; » & B} ciy; »r<f3n Bic
ci7;¥ S &Y =EP(A) c{y; y ¢ BS = EP(B). On the other
hand, dS A & d¢A & d R o and thence o & PE(A) and there-
fore PE(A) +#PE(B) and we are done.

A formula is called seminormal iff it contains only quan-
tifiers of the form (3 2 Sms(Z)). Let us note that every nor-
mal formula is (equivalent to) a seminormal one since every

set is g semiset.

Theorem. Let I be a class of strong indiscernibles which
is no semiset and let J be a subclass of I such that UJ is
no 6 -class. Then the class A ={x;(3eed) w(x?42ef is an
endomorphic universe such that for any seminormal formula
@ (Zl,...,Zn) of the language FL, and any Xj,...,X < A semi-
sets in the sense of A we have ¢ A(Xl,...,xn)§g>(X,...,Xn).

Proof. A is a revealed class since UJ is no &-class

and moreover DefA = A by the first section. Hence A is an en-
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domorphic universe according to § 1 [S-V 1].

Our statement concerning seminorinal formulas can be pro-
ved by induction on their length. The only nontrivial case
is when ¢ has the form (3Z Sms(2)) y (2,Zy,...,2 ). Let us
suppose that for any X,Xl,...,Xn semisets in the sense of A
we have y M(X,Xp,..0, X)) = w (X,Xy, 000 X )0 T Xy,en0 X sem
misets in the sense of & are given then g;A(Xl,...,Xh?——>
— @ (Xp,...,%) because of Sme*(Z) —> Sms(Z). Let us choo-
se e edJ so that Xl,...,x‘ns.?(e) and so that all parameters:
oceurring in y belong to 5(e), further let X be a class
with Sms(X) & y (X,X;,...,X ). Since UJ is no set, we are
able to fix eo,eieJ such that e< e,< e]'_ and according to
the facts that I is no semiset and that X is a semiset, we
can fix even e; €I such that e <e; & Xs?(el). By the first
section we can find an gutomorphism F such that F is identi-
cal on P(e) and such that Fle ) = ei. Thus we have
¥ (F"X,X) ..., X)) & F"XeP(e]) from which ¢ AXy,...,x)
follows.

Let us remind that if I is a sr-class of strong indis-
cernibles which is no semiset, then we are able to find a
descending sequence {enuxeFﬂi of elements of I and to de-—
fine J = InNdie ;ne FX§, Then UJ is a x -class and hence
it is no & -class according to the last statement of § 5
ch, IILV]. Thus we can fix in the alternative set theory

classes having properties desired in the last theorem.
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