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A NOTE ON THE NUMBER OF ASSOCIATIVE TRIPLES IN FINITE
COMMUTATIVE MOUFANG LOOPS
Tomas KEPKA

Abgtract: Let G be a finite non-associative commutati-

ve Moufang loop. Then G hss at most 313n3/729 associative
triples of elements.

wordgs: Associative triple of elements, commutative
Moufang loop.

Classification: 20NO5

In the present time, a considerable attention is paid to
the theory of commutative Moufang loops (see [1] - [14]). It
is well known that these loops are diassociative and locally
nilpotent. Moreover, if A is an associative subset of a com-
mutative Moufang loop then the subloop generated by A is a
subgroup. Now, it is natural to ask about the maximal possib~
le number of associative triples of elements, a finite non=-
associative commutative Moufang loop can possess. In this no-
te, we show that a(G)< 313n3/729 (and hence a(G}< 43n3/100),
where a(G) is the number of associative triples in a finite
non-associative commutative Moufang loop G of ofder n. This
result is somewhat surprising, especially in connection with
the following easy fact: For every even nZ 40, there exists

a non-associative commutative loop G of order n such that
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a(G) > 99n3/100.

1. Introductiog. Let G be a groupoid. We put A(G) =
={(x,y,2); x,y,2€Q, x.yz = 2} and a(G) = card A(G).

Let G be a loop, i.e., a groupoid with unique division
and a unit element., If G satisfies the identity xx.yz = xy.xz
then G is commutative and it 1s called a commutative Moufang
loop (the reader is referred to [5] for details concerning
these loops).

For every positive integer n, we shall define a number
b(n) as follows: If there exists at least one non-associative
commutative Moufang loop of order n then b(n) = max a(G) whe-
re G runs through all non-associative commutative Moufang

3

loops of order n; b(n) = n” in the remaining cases.

2. A ts. Let pZ2 be a prime and Fp =
= {0,1,...,p—1} the finite field of integers modulo p. Consi-

der a finitely generated vector space V over F_ and an anti-

P
symetric bilinear form £:V2—> Fpe Put n=dim V, Ker £ =
={xeV; £(x,y) = 0 for all yeV% and z(£) = card 1 (x,y);

x,yeV, £{x,y) = 0%.

2.1, Lemma. (1) If n =0 then £ = O.

(11) If p+2 and n41l then £ = O,

Proof. Obvious.

2.2, Lemma. Suppose that p#2 and £+4+0. Then 24 n and
z(f)é (pz +Dp- 1).p2n.3o

Proof. We shall proceed by induction on n. For n<1l,
£ = 0 and there is nothing to prove. Let 24 n. Assume first
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that Ker £ = O. For all O4yecV, the mapping x —» £(x,y) 1is
a non-zero linear form. Therefore, z(f)< (p® - 1)p™1 + p? =
= p2™ 3, (pZ + p¥™® = p2°0) and the rest is clear. Now, let

Ker £40., There is a subspace W of V such that V = W + Ker f
and WnKer £ = 0. Put m = dim W, k = dim Ker f and g = £|¥.
Then 1<k, m<n, n = m + k. For all x,y€ W and u,veKer f,

we have f(x+u,y+v) = £(x,y) = g(x,y). Hence z(f) = z(g).ka.
Since £+0, g+0 and z(g) 2(p2 + p - 1),p2™3

2(£) < (p2 + p - 1).p203,

» Consequently,

2,3, Lemma. Suppose that p = 2 and £40. Then 14 n and
z(£) £3,220°2,

Proof. Similar to that of 2,2,

2.4, Lemma. (1) If p =2, n =1 and £40 then z(f) = 3.

(11) If p$2, n =2 and £40 then z(£) = p> + p° = p.

Proof. (i) This is clesr.

(1ii) Let4x,y} be a basis of V. For all a,b,c,der,
£(ax+by,cx+dy) = (ad-be)f£(x,y). Since £4+0, £(x,y)+0 and

2(f) = card 4(a,b,c,d); ad = bel.

3. Auxjliary results. Let V be a finitely generated vec=-

tor space over F_ and f:V3-—> Fp an antisymmetric¢ trilinear

P
form (i.e., £(x,y,2) = -£(y,x,2) = -f(x,z,y)). Put n = dim V,

Ker £ =4{xeV; £(x,y,z) = O for all y,zeV§ and z(f) =
= card {(x,y,2); £(x,y,2) = 0%.

3.1 Lemma. (i) If n =0 then £ = O.
(11) If p*2 and n42 then £ = O.

Proof. Obvious.
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3.2. Lemma. Suppose that p#+2 and £+0. Then 34n and
2(£) £ (p? » p* = p2 = p +1).pI076,

Proof. We shall proceed by induction on n. For n£2,
£ = 0 and there is nothing to prove. Let 34 n. Assume first
that Ker £ = 0. For every O4 2z €V, the mapping (x,y) —

— £(x,y,2) is a non-zero antisymmetric bilinear form. Hen-
ce, by 2.2, z(£) £ (p" ~1)p2n'3.€p2 +p=-1) + p""l =

= p3n'6.(p5 - p‘ - p3 - pﬁ-n - p4-n . p3-n . pé-n) and the
rest is clear. Now, let Ker £+ 0. Then we can proceed simi-

larly as in the proof of 2.2.

3.3. Lemma. Suppose that p = 2 and £4+ O. Then 14n and
Z(f):é 7.23']"3.
Proof. Similar to that of 3.2.

3.4, Lemma. (1) If p =2, n=1 and £40 then z(f) =7,

(11) If p#2, n = 3 and £40 then z(f) = p® + p7 -p° -

- P4 + 93'

Proof. (1) This is clear.

(11) Let ix,y,2} be a basis of V. For all a,b,c,d,e,q,
r,s,teF, f£(ax+by+cz,dxrey+qz,rx+ay+tz) =
= (set - ags - bdt + bgr + cds - cer)f(x,y,z). Since £+0,
£(x,y,z)#0 and z(£) = card {(a,b,c,d,e,q,r,s,t);
a(et-qs) + b(qr-dt) + c(ds-er) = 0f. Put 4 =4{(d,e,q,r,s,t);
et+qs%, B = {(d,e,q,r,s,t); et = g3, qr4dty, C =
= {(d,e,q,r,s,t); et = g8, qr = dt, ds¥erj and D =
= {(d,e,q,r,s,t); et = g8, qr = dt, ds = er}. Then these sets
are pair-wise dis joint and z(f) = pz(card A+ card B * card C +

6

+ p.card D). However, card A = p° - p5 - p‘ + p3, card B =

=p> -p* - p+p?, card c=p* - p¥ - ;2 + pand card D =
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’P“"P3‘P-

3.5. Lemma. (i) If p=3, n =3 and £4+0 then z(f) =
= 8451.

(11) If p = 3 and £40 then z(£)< 313,307,

Proof. Use 3.2 and 3.4.

4. Auxilisry results. Let pZ2 be a prime. Consider a
finite abelian p-group G(+) of order n and an antisymmetric
triadditive mapping £:G(+)3—> G(+)} such that pe(x,y,z) =0
and £(£{x,y,z),u,v) = O for all x,y,z,u,vcG. Put Ker £ =
={xeG; £lx,y,2) =0 for all y,z€G and z(£) = card{(x,y,z);
x,¥,2€ G, £(x,y,z) = 0%,

The group G(+) is a direct sum of non-zero cyclic groups,
say G(+) =G (+) +...+ G (+), O£ m.

4.1. Lemma. Suppose that p#2 and £+0. Then 3<m and
z(f) < (p5 + p4 - p2 -p +1)p'6.n3.

Proof. Obviously, 3< m. Further, we shall proceed hy in-
duction on n.

(1) Suppose that Ker £ contains a non-zero subgroup
H(+) such that £(G3)¢ H. Put K(+) = G(+)/H(+), r = card K,

s = card H. Then n = r8, r<n and there are xl,...,xrsG such
that G = {x; + Hu...u(x, + H). Since HEKer £, £ induces
in a natural way an antisymmetric triadditive mapping g:
:K(+)3 — K(+). We have g24+0, since f(G3)$H, and so z(g) <

2. p + 1),p'6.r3 by the induction hypothesis.

<(p®+p*-p
On the other hand, f(xi-'u,xj-*v,xkﬂv) = f(xi,xJ,xk) for all
144,J,k4r and u,v,wcH. Hence z(f)< z(g)s3.

(11) Suppose that f(G3) is contained in every non-zero
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subgroup of Ker £, Then f(G3) is a p-element group. Put K(+)=
= G(+)/pG. Since pGSKer £, £ induces in a natural way an an-
tisymmetric triadditive mapping g:K(+)3—> £c3). Moreover,

g+0 and z(g) <(p’ + ot - pz -p+ l)p"6 . 3 where r = card K

(use 3.2). The rest is clear.

4.2, Lemma. Suppose that p = 2 and £+0. Then 1< m and
2(£) £ Tn/8.
Proof. Similar to that of 4.1.

4.3. Lemma. Suppose that p = 3 and £+ 0. Then z(f) =
<313n3/729.
Proof. Use 4.1l.

5. Maln regults. Let G be a commutative Moufang loop.
We denote by C(G) the centre of G and put [a,b,cl =
= (ab.c)(a.be)™L for all a,b,ceG.

5.1l. Proposition. Let G be a finite commutative Moufang
loop of order n. Then:

(1) G is centrally nilpotent.

(11) G is a group, provided n is not divisible by 8l.

(141) G is a direct sum of p-loops for some primes p.

Proof. See L5].

5.2. Lemma. Let G be a finite commutative Moufang loop
of order n and K a subloop of C(G). Put H = G/K, m = card B
and T = card K. Then mr = n and a(G)&r>.a(H).

Proof. There are X)sees9Xp€ G such that xlxu...uxmx =
= G, Let (xiu,va,ka)e A(G), 1£1,j,k4m, u,v,we K. Since
Kec(a), (xi,xj,xk)eA(G) and (xiK,xJK,ka),sA(H). The inequa-
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lity a(G)<¢ r3.a(H) 1s now clear.

5.3. Lemma. Let G be a finite non-associative commuta-
tive Moufang loop of order n. Then n is divisible by 81 and
a(G) & 313n3/729.

Proof. We shall proceed by induction on n. By 5.1(ii),
n is divisible by 8l. By 5.1(iii), there are m =1, prime num-
bers PraeeesPp and non-trivial subloops Gl""’Gm of G such
that py =3, Gy is a pj-loop for every i1 and G is the direct
sum of these subloops. Then Gy is not associative, GZ""'Gm
are groups and a(G) = a(Gl).ng cee ni, n; = card Gy. If 2<m,
then ny< n, a(Gl)£313n%/729 and a(G) £ 313n3/729. Hence, we
can assume that m = 1 and G is a 3-loop. If G/C(G) is not as-
sociative then 3<r = card C(G), card G/C(G)<n, a(G/C(G)) <
£313n3/729r3 and a(G) <313n3/729 by 5.2. Consequently, we
can assume that G is a 3-loop nilpotent of class 2. By [9],
there are an abelian 3-group G(+) and a triadditive mapping
£:6(+)3 —> G(+} such that 3£(x,y,2z) = 0, fix,y,z) = -£(y,x,2),
£(£lx,y,2),u,v) = 0 = £(u,v,f(x,y,2)) and xy = x + y +
+ £(x,y,x~y) for all x,y,z,u,veG. It is easy to check that
La,b,ec] = gla,b,c) = £(a,b,c) + £(b,c,a) + £(c,a,b) for all
a,b,c€G. The mapping g is an antisymmetric triadditive map-
ping and 3glx,y,z) = glg(x,y,2),u,v) = O for all x,y,z,u,veG.
Since G is not associative, g40. By 4.3, z(g)é;313n3/729.

However, z(g) = a(G).

S5¢4. Lemma. Let n be a positive integer divisible by
8l. Then there exists a commutative Moufang loop G of order
n such that G is nilpotent of class 2 and a(G) = 313n3/729.

Proof. Put H(+) = K}, £(x,5,2) = (0,0,0,(x;¥,~%,¥1)25),
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glx,y,z) = £(x,y,2z) + £(y,z,x) + £(z,y,x) and xxy=x + y +
+ £lx,y,x-y) for all x = (xy), y = (y;) and 2z = (z4) from H.
Then H{X ) is a commutative Moufang loop of order 81 and
a(H(x)) = z(g). But z(g) = 313.813/729 by 3.5. Now, let K(+)
be an abelian group of order n/81 and G = H(x ) <K(+). Then
G is a commutative Moufang loop of order n and a(G) =
313n3/729.

5.5. Theorem. (i) b(n) = nd for every positive integer
not divisible by 8l.

-]

(11) bln) = 313n3/729 for every integer n2 81 divisible
by 81.

Proof. Apply 5.1(ii), 5.3 and 5.4.

References

[11 L. BENETEAU: Une classe particuliére de matroides par-
faits, Ann. Discr. Math. 8(1980), 229- 232.

[2]) L. BENETEAU: Free commutative Moufang loops and anti-
commutative gradede rings, J. Alg. 67(1980),
1-35.

(3] L. BENETEAU, J. LACARE: Groupes d automorphismes des bouc-
les de Moufang commutatives, Europ. J. Comb. 1
(1980), 299-309.

(41 G. BOL: Gewebe und Gruppen, Math. Ann. 114(1937), 414-431.

[5] R.H., BRUCK: A survey of binary systems, Springer Verlag
1971.

[6) R.H. BRUCK: An open question concerning Moufang loops,
Arch., Math. 1061959), 419-421.

[7] M. DEZA: Finite commutative Moufang loops, related mat-
roids and association schemes, Proc. Conf. Comb.,
Arcata, California 1979, 3-15.

{8] T. EVANS: Identities and relations in commutative Moufang

- 752 -



loops, J. Alg. 31(1974), 508=513.

[9] T. KEPKA, P. NEMEC: Commutative Moufang loops and dist-
ributive groupoids of small orders (to appear).

[10] K. KOZIOL: The extensions of commutative Moufang loops
of period 3, Pr. Nauk. Uniw. Slask. Pr. Mat.
10(1979), 86-93.

[11] R. ROTH, D.K., RAY-CHAUDHURI: Commutative Moufang 3-loops,
Not. Amer. Math. Soc. 84(1978).

[12] A.PF. RUSSU: O mnogoobrazijach poroZd&nych kone¥noj komu-
tativnoj lupoj Mufang, Mat. Issled. 51(1979),
120-129.

[137 I.I. SANDU: O slo%nych associatorach komutativnoj lupy
Mufang, Mat. Issled. 51(1979), 130-144.

{14] J.D.H. SMITH: Exterior algebra representations of com-
mutative Moufang loops, Arch. Math. 34(1980),
393-398.

Matematicko~fyzikdlpf{ fakulta, Universita Karlova, Sokolovské
83, 18600 Praha 8, Ceskoslovensko

(Oblatum 29.1. 1981)

- 753 -



		webmaster@dml.cz
	2012-04-28T07:31:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




