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A NOTE ON THE NUMBER OF ASSOCIATIVE TRIPLES
IN QUASIGROUPS ISOTOPIC TO GROUPS
Ales DRAPAL, Tomas KEPKA

g t: Let G be a finite non-associative quasigroup
of order n gsotopic to a group. Denote by a(G) the number of

associative triples of elements of G. Then a(G)en3 - 4na +

+ 6n, mwrovided nZ3 is odd, end a(@)<nd - 4n% » 8n, provid-
ed n is even.
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In the past, some problems concerning associative trip-
les of elements in finite groupoids were studied from time
to time (see [11,[31,[4] and [5]). Such questions and inves-
tigations (especially those concerning enumerations) belong
to a certain branch of combinatorial algebra, and therefore
they are of interest in the present time, too. In [2], the
upper and the lower bounds for a(G), G being a finite non-as-
sociative commutative quasigroup isotopic to a group, were
found. The purpose of this short note is to investigate the

same problem in the non-commutative case.
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1. Iptroduction. For a groupoid G, let A(G) = {(a,b,c);
a,b,c&G, a.be = ab.c} and a(G) = card A(G). Let C be a class
of groupoids. Then, for every positive integer n, we define
numbers a{C,n) and b(C,n) as follows: a(C,n) = -1 = b(C,n) if
C contains no groupoid of order n; a{C,n) = min a(G), GeC,
card G = n, 1f C contains at least one groupoid of order n;
b(c,n) = n3 if C contains at least one groupoid of order n
and every such groupoid is associative; b(C,n) = max a(G),
GeCy G not associative, card G = n, if C contains at least
one non-associative groupoid of order n.

Let G be a groupoid amd ae G. Define two transformations
L, and R, of G by Le(b) = ab and Ra(b) = ba.

2. Auxiliary resylts. In this section, let G{+) be a fi-
nite group (possibly non-commutative) of order n and £ a per=-
mutation of G. Put £°(x) = £(x) - x and £ "(x) = =x + £(x) for
every x cG. Let p(f£) = card {(x,y); x,yeG, £°(x) = £°(y)} and
q(£) = card {(x,¥); x,yeG, £"'(x) = £"7°(y)§. For every acIn £’
CaeIm £°°), let pla,f) = card A (q{a,f) = card A) where A is
the block of ker £’ (ker £°°) with £°(A) = a (£°°(4) = a). If
a¢Im £" (a¢Im £”") then p(a,£) = 0 (q(a,£) = 0).

2.1. Lemma. p(f) = Z p(a,£)? and q(£) = I qla,0)%.
Proof. Obvious.

2.2, Lemma. p(f) = p(L';f) and q(f) = q(R;f) for every
acG.

Proof. Obvious.

2.3. Lemma. Suppose that n is odd and £#L] (£4Rj )

- 736 -



for every a€ G. Then p(f)< nZ-4n+6 (qlf) 2 n - 4n + 6).
Proof. The proof i1s in fact the same as that of [ 2,

Lemmg 2.3].

2.4. Lemma. Suppose that f#L; (f:l:R:) for every aecG.,
Then p(£) < o - 4n +8 (q(£)2 n - 4n + 8).
Proof. The same as that of [ 2, Lemma 2.5].

3. Auxiliary results. In this section, let G(+) be a
finite group of order n and £, g permutations of G. Put

r(f,g) = card i(a,b); a,beC, £ '(a) = g°"(v)}, Bl(£,g) =
={(a,b,e); =a + £(a) = £(b) = =g(b) + glc) - c}, s(f,z) =
= card B(f,s) and t(f,g) = card {(a,b); g (£ "(a)) =
= £71(~g" (b))} - card {(a,b); £(b) + g(b) = b, £ °(a) =
= £ °(b)} - card {(a,b); asb, £(a) + gla) = a, g’(a) =
= g"(b)3.

3.1. Lemma. r(f,g) = = pla,g)q(a,r).

Proof. Obvious.

3.2. Lemma. Let nZ1l and let Bl,ooo ,.n,b1|ouo .bn be re=
al numbers. Then = a4by £ max (= ag, = bi).
Proof. Obvious.

3.3. Lemma. r{f,g)< max (q(£),p(g)).
Proof. Use 3.1, 3.2 and 2.1.

3.4. Lemma. t(£,g) + p(g) + q(£) - ncals,g).

Proof. Put A = {(a,a,a); a€G}, B ={(a,b,b); asd,
£°°(a) = £°°(b)%, C ={(a,a,b); a%d, g (& FFTI6)¢ and
D ={(a,e,b); ¢ = g 2(~£""(a)) = £71(=g"(b))}. Then
&#vBuUCuDEB(L,g), AnB = KknC =BNC =, card A = n,
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card B = q(£) = n, card C = p(g) - n. Finally, Dn(AuBUGC) =
= {(a,b,b); £(b) + g(b) = b, £°°(a) = £° " (b)3ui(a,a,b);
£(a) + gla) = a, a+b, g'(a) = g"(b)}.

3.5. Lemma. Suppose that neither £°° nor g’ is a permu-
tation. Then n + 4<s(f,g).

Proof. q(f)4n + 2 and p(g)l4n + 2,

3.6. Lemma. Suppose that either £°° or g’ is a permuta-
tion. Then n°< s(f,g).

Proof. Let £ ° be a permutation. Then, for all b,ceG,
there is an a &G with ~a + £(a) = -g(b) + g(c) - ¢ + £(b).

3.7. Lemma. s(f,g) = F r(R:f(b)f, L:g(b)g) =
_ + +
= ;T—b q(a,R_f(b)f)p(a,L_s(b)g).
Proof. Easy.
3.8. Lemma. 8(f,g)< n.max(q(£),p(g)).
Proof. By 3.3 and 2.2, r(R:f(b)f, L:“b)g).é max(q(£),p(g))
and we can use 3.7.
3.9, Lemma. If £ = 1d (g = 4d) then s(f,g) = np(g)
(s(£,g) = nq(£)).
Proof. Easy.

4. Auxilisry regultg. In this section, let G(+) be a fi-
nite group of order n and f, g permutations of G. Define a mul-

tiplication on G by ab = £(a) + g(b). In this way, we obtain a
quasigroup G.

4.1. Lemma. (i) G contains a left unit iff g = L: for

some ac G.
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(14) G contains a right unit iff £ = R: for some acQ.
(111) G is a group iff £ = R and g = L} for some a,bed.
Proof. Easy.

4.2, Lemma. a(G) = s(f,g).

Proof. (x,y,z)e A(G) 1ff £(x) + g(£ly) + g(g)) = £(f(x)+
+ gly)) +» g(z). Since £, g are permutations, a(G) = card A,
where A = {(x,y,2); x + g(£(y) + 2) = £(x + gly)) + z}. Defi-
ne a mapping h of A into B(£,g) by hix,y,z) = (x + gly),
¥7,2(y) + 8). Then h 1s bijective.

5. Quasigroups isctopic to groups. In the following re-
sult, let a(n) = a(C,n) and b(n) = b(C,n) where C is the class

of left loops isotopic to groups.

5.1, Theorem. (i) a(l) =1 =b(1), a(2) = 8 = b(2).
(14) a(n) = n? for every n such that either n is odd or
n is divieible by 4.

(111) a(n) = n? + 2n for every even n not divisible by 4.

(1v) b(n) = n3

(v) bln) =nd
Proof. (1) These equalities are clear.
(11) end (i11). Let G be a finite quasigroup of order n
such that G contains a left unit e and G is isotopic to a group.

Put x+ y = R;l(x)y for all x,ye G. Then G(+) is a group and

- 4n% + 6n for every odd nZ3.

- 4n2 + 8n for every even n.

xy = £(x) + y, £ = R,. By 4.2, and 3.9, a(G) = nq(£). Since
n<q(f), n?< a(G) and we have proved that n?< a(n). If n = 2m
for an odd m then £ cannot be a permutation (this fact is

easy and well known - se¢ e.g.[1]), and so n + 2<q(f),
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n? = 2n<a(G) and n? + 2n<a(n). In the reat, we can proceed
similarly as in [2, Lemmas 1.5, 1.6, 2.101.

(iv) and (v). Suppose that n>3. Let G be a non-associ-
ative finite quasigroup of order n such that G contains a
left unit and G is isotopic to a group. Then there are a group
G(+) and & permutation £ of G such that xy = f(x) + y for all
x,y€ G, Since G is not associative, f#R; for every aec G. By
4.2, 3.9 and 2.4 (resp. 2.3), a(G¥<n¥ - 4n? + 8n (resp.

a(G)z n3 - 4n? + 6n provided n is odd). In the rest, we can
proceed similarly as in [2, Lemmas 2.6, 2.71.

In the following result, let a(n) = a(C,n) and b(n) =

= b(C,n) where C is the class of quasigroups isotopic to groups.

5.2. Theorem. (1) a(l) =1 =1b(1), al2) =8 = b(2),

(11) n + 42 a(n)£n? for every nz2 such that n is either
odd or divisible by 4.

(111) n + 42 a(n)<n? + 2n for every even n which is not
divisible by 4.

(1v) bln) = nd - 4n° + 6n for every odd n=3.

(v) b(n) =n3 - 4n? + n for every even n.

Proof. (i)} These equalities are clear.

(11) and (111). We can assume that 3< n. Then n + 4<n°
and the result follows from 3.5, 4.2 and 5.1.

(iv) Let G be a non-agsociative quasigroup of order n
such that G is isotopie¢ to a group. With respect to 5.1, we
can assume that G is neither a left nor a right loop. Then the-
re are a group G(+) and permutations £, g of G such that ab =
= f(a) + g(b) and f#R: ’ g#-L'; for all a,beG (use 4.1). By
4,2, 3.8 and 2.3, a(G)4 n3 - 4n2 + 6n. Thus a(n)£n3 - 4n2+ 6n.
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The converse inequality follows from 5.1(iv).

(v) We can proceed similarly as in (iv).

6. Auxiliary results. In this section, let G(+) be a fi-

nite abelian group of order n and f, g endomorphisms of G(+).
Put C(f,g) =4{(a,b); a,beG, £(a) = g(b)§ and u(f,g) =
= card C(f,g).

6.1, Lemma. n<u(f,g).

Proof. Define a mapping h:G»=G —> G by h(a,b) = £(a) =
- g(b). Then h is a homomorphism of the abelian group G(+) x
% G(+) into G(+) and Ker h = C(f£,g). Hence (card Ker h).
.(card Im h) = n° and card Im h<n. Consequently, n<ul(f,g).

6.2, Lemma. Suppose that n = 2m where mZ1 is odd and
that £ =h", g = kx* for some automorphisms h and k of G(+).
Then 2n<u(f,g).

Proof. We can assume that G(+) = H(+)xK(+), h = h)x h,,
k = k,x k, where H(+) is a group of order m, K(+) =10,1} 1s
a two-element group, h),k; are automorphisms of H(+) and hy,
ky of K(+). Then h, = 1d = k,, hy =0 = k,, £ = hyx 0, g =
= k)% 0 and the result follows easily from 6.l.

Put r = card Ker £ and s = card Ker g.

6.3. Lemma. u(f,g)<mex (rn,sn).

Proof. For every acG, let r(a) = card{b; £(b) = a}
and s(a) = card{b; g(b) = a}. Then u(f,g) = £ r(a)s(a). By
3.2, ulf,g)< max( = r(a)z, = a(a)?). However, rn = = r(a)?

and sn == sa(a)?,

6.4. Lemma. Let £ = O (g = 0). Then u(f,g) = sn
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(u(f,g) = rn).
Proof. Ea’y.

7. Auxiliary results. In this section, let G(+) be & fi-
nite abelian group of order n, £, g commuting automorphisms
of G(+) and weG, Put ab = £(a) + g(b) + w for all a,bcG. We
obtain thus a medial quasigroup G.

7.l. Lemma. (i) £ = id iff G contains a right unit.
(11) g = 1d iff G contains a left unit.

(111) G is a group iff £ = id = g.

Proof. Easy.

7.2. Lemma. a(G) = nu(£’,g").

Proof. (x,y,z)e A(G) 1ff £2(x) + glz) + £(w) = £(x) +
+ 52(2.) + g{w). Thus a(G) = n.card A where A = {(x,y);
f(x+w) -x=-w=gly+w -y - w}. The rest is clear.

8. Medial gussjigroups. In the following result, let a(n) =
= a(C,n) and b(n) = b(C,n) where C is the class of medial qua-
sigroups.

8.1. Theorem. (1) aln) = n? for every n such that n is
either odd or divisible by 4.

(11) aln) = 202 for every even n not divisible by 4.

(iii) b(l) =1 and b{n) = n3/p for every odd nz3, p
being the least prime dividing n.

(iv) ©b(2) = 8 and b(n) = n3/p for every n = 2m where
mZ3 4s odd and p is the least prime dividing m.

(v) b(n) = n¥/2 for every nZ 4 divisible by 4.
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Proof. Using 6.1, 6.2, 6.3, 6.4, 7.1 and 7.2, we can

Proceed similarly as in the proofs of 5.1, 5.2 and L2, Theo-
rem 3.3].
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