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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,4 (1981)

ULTRAFILTERS OF SETS
A. SOCHOR, P. VOPENKA

Abstract: In the Alternative Set Theory we shall stu-
dy witrafilters of sets defining the following two ¢ cte-
ristics of am ultrafilter %97 : «( m; = {03 (V)P 2R o« &
A UDeW )—>p n W+0% and v( MWL) = {03 (Vx e W)
1x =2} . Por any two cuts we discuss the existence of an
ul:rafiltcr such that its characteristics equal to given
cuts.

Ke* words: Alternative Set Theory, ultrafilter, set-
theoretically definable class, @ -complete ultrafilter.

Classification: 03E70, O03H99

In AST, we are going to deal with ultrafilters on the
system of all set-theoretically definable classes (cf. ch.
II [V]); this system is denoted by the symbol Sdy). In the
paper we restrict ourselves to ultrafilters containing a
set. The theory of such ultrafilters essentially differs
from the corresponding theory in ZF; in particular in AST
we are able to construct on arbitrary infinite set ultra~
filters which are "measures" (and moreover we can deal with
additional properties which on one hand distinguish ultra-
filters in AST and which on the other hand are equivalent
in ZF).

For every set x there is exactly one natural number

« such that there is a one-one mapping of x onto o« which
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is a set (in symbols x ~s o ). We shall investigate the fol-
lowing two cuts which naturally characterize an ultrafilter
N

) = {ovs (VP)((P 2 o &UP e %) —» p n W2 +0)

y(M) = {0 (Vx e )ax X oo
and we are going to show necessary and sufficient conditions
for cuts R and S such that there is an ultrafilter 93/ with
() = R&%»(2%) = S. (Let us remind that in ZF if 77¢ is
an ultrafilier which is a measure on a measurable cardinal o€
then both correspoding characteristics equal to 2¢e .)

If 21 is a nontrivial ultrafilter on Sdy containing a
get then the routine calculation gives us the equalities
L M) =dcc; (Vp)((p 2« &Up e 7% &"p is pairwise dis-
joint®) — p N WM +0)3 = {ov; (V£)((dom(f) < ¢ & rng(f) =
c M) —>Nrg(f) € M)t ={; (V)((dom(L) < o &
& rng(f) < 91 ) — N rng(£) +£0)3.

In fact, defining for every p with Up e 77/ and every
g which 1s a one-one mapping of p into cv the fumetiem £(})=
=Up - g"l(fx) we get dom(f) c ¢ & (p N 7= 0 = rng(f) <
c 7 )& Nrng(f) = 0 and defining furthermore for every f
with dom(f) ¢ =« % rng(f) c ¥7 the partition p = {N rng(£)}y
viNL2(B); B eri-2(2); Oeyecoc? we get Up = £(0)e
e M &p % o & "p is pairwise diajoint"& (p n WL 40 =
=Nrng(f) e 99).

Let us recall that a nontrivial ultrafilter 3977 contain-
ing a set is called w-complete iff for every sequence {un;
nefN{ c 77 there is u € 71 with u c ﬂ{un;neFN}. Further-

more X is a sor-class ( 6-class respectively) iff there is a
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sequence {xn;nel'l}sde with X = ﬂ{L‘;ne!’l} (X = U{xn‘

ne PN} respectively). We are going to write x2 X 1f the-

re is & set-functiem of x into X and the symbol x i\— X deno-
tes 7 x 2 X. Evidently, if X is a out them x 2 X iff

(3ceX) x & « -

Theorem, If 71 is a nontrivial ultrafilter on Say
containing a set then '

(&) o, BeBl)—>t-R e 4 (BL)

(d) (tew(@)&Be >y (FL))>x-8 ¢ » (HL)

(¢) FNc w(9t) s »(H)cH

(@) if »(997) is & or-class them 7! is not @ -complete

(e) if 92 is not @ -complete then («,(%) = M

Proof. (a) If ¢, 3c w(t) and if U{u%f‘ reo< &
%« e [5}6 P! then there is d‘; € 4 such that U{ur d,o;f(ros

2
€ < } e @ and thus there is y, & < with u € L .
To.d-o

(b) If u _Q:x,/a &oc e (D) & Be» () then there
is & sequence {u ; y €<} such that u 2 (3 foreveryyeo
and such that U4 Uiy e ot = u., Supposing u € 7/ we can
choose , coc with uxo € 7991 which contradicts uyog B e
e » ().

(e¢) Since Wl is an ultrafilter, we have 2 e w(#t) and
thence using (a) we get FN E(u(m’L). Ifue PEu ~ o €
e (W) then {ix};xeui I o« & U x¥sxecu’t ¢ B and the-
refore 77 would be trivial. Since 77{ contains a set, we
have » (7L )c XN,

(d) Assuming that » (77{) is a ar-class we can const-
ruct a sequence {o,;n cFN! so that N{ o snePRE = » ().
Thus there is a sequence {w,;n eFN} € %1 such that u, A o<y
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for every ne FN. Moreover if uc /) {u ;n e ¥N} then
w3 » (W) and therefore u ¢ 71 ; we have proved that
WL is not @ -complete.

(e) Let us asaume that (u,(’m)4=m and that a sequen-
ce -(un;nel'l§ c 79 ia given. Put P ={N { Wm£nt w43
ne FR}. By the prolomgatiom axiom there is a pairwise dis-
joint set p so that Pcp & Up = uy e @& p X w(@). Thus
there is uecp n % and evidently uc/){ w,;n e FN§, thus /(A
is @ -complete.

Using the inequality o+ 3 <2 max(es,(3) we get the
following result.

Consequence. If 731 is a nontrivial ultrafilter om
Sdy comtaiming a set then the cuts (%) and » (@L) are
closed w.r.t. +. .

We are going to show that for every cuts RS Sc N there
are ultrafilters %% , %1’ such that w(Wt) = w(9L’) =
=R&¥(W) = »(PL’) = S and W is w-complete and WL’
is not w -cm;ete under the assumption that the existense
of such ultrafilters is not excluded by the first theorem
of the article. Im particular let us note that if S is a
or -class then for every ultrafilter oem de containing a set
we have (@1 ) = FN and 790 cannot be w-camplete and the-
refore the following theorem solves this case fully.

Theorem. If a proper semiset S is a cut whioh is
closed w.r.t. + then there is a nontrivial ultrafilter ¥f
on Sdy which is not w-complete and such that » (%) = S.

Proof. Put i =4 - x; o« ¢ S&x 3 S%. Supposing Bz

zZ ¢ S&x,y% S we get (b= x)N(B=-¥) = x=- (xuy)
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and xuyg S. Therefore we are able to choose an ultrafil-
ter 77U on Sdy such that 7{ < %1 . I 23 S then for every
& Swe have o= x € %! and thence x ¢ % , from which
the inclusion S ¢ (%) follows. The converse inclusion is
& trivial consequence of the formula ¢ S —> x € %L .

If S is a s'-class then there is no w-complete wltira-
filter ! om Sdy with » (%) = S and hence we cen assume
up to the end of the proof that 5 is no sr-class. Let W‘ID
be a nontrivial ultrafilter on Sdy with »( #%,) = S and
let 93’11 be an ultrafilter on Sdy such that W 2{c - x;
% 4¢FN & xR FN},moreover,we can assume ¢ S —>ec W .We put

M=1UeBdy; (du e P,)(Vne(FRnu))(U"{nt ¢ a3

(cf. the definition of product of ultrafilters in 7F). Por
every U,We Sdy we have $n;(UnW)"{nt e m°§ =4{n;U"4{n}e
e ?moin-tn; Wwi{n} e mo?; and hence U,W € WL = (UnW)e
€ %@t , According to the prolongation axiom for every U e
C Sdy there are u,, u, such that (ulu u2) e ??‘ll&ulnuz =
= 0&in;U" {n} e Myéc uy &{n;(-0)"{n} e A ol S Upe
Since U e L =u; & %1 we get U ¢ %L =(-U) ¢ 21 . Thus
we have proved that 7 is an ultrafilter on Sdy.

Let « ¢ FN & 9¢ S. For every n cFN we put u, =
= P x (= n), thus w, is an element of 4t for every neFN,
of course, and if uc N{wu ;;ne PN} then there is 3 ¢ FN so
that un("%x<3)) = 0, from which u ¢ WL follows. We have
shown that 9 is not o -complete.

If uX S then for every n € FN we have u"{n’;?._ S and
hence u" {n} ¢ W, and as a comsequence we obtain u ¢ .
Thus we have got the inclusion S c v (@Wt). If 0”¢ S then
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for every mc PN there is -y, ¢S5 sp that y,.m<J" (becau-
se S is olesed w.r.t. +) and moreover since we assume that

S is no gy ~class we are able to choose ¢ S and 3 ¢ FN

so that - 3 < d . Evidently y=pett and/yx/sgd"
from which d'¢ » (77) follows. Thus we have shown » (7 )c
S S which completes the proof.

The class {) of ordinal numbers was defined in § 3 ch.
II [V]. An ordinal number o ¢ f). is called a limit ordinal
mumber iff there is no 3 € S with o= (3 + 1. To prove the
main theorem of the paper we mneed the following two lexmas.

Lemma. Let{u_; oc € QfcP(w) - {0} be a descending
sequence such that the formula (V q)((Uq = w&q=X FN) —>
—>(3ecen)(Aveq)(u s v)) holds. Then ¥i= {Uesay;
(3t e O)(u, c U} is an o> -complete ultrafilter on Sdy
(such that w e 9L ).

Proof. If {U;;neFN}< WL then for every neFN we
can choose oLy € 0 so that u“ng Un' According to proper-
ties of (L there is oc € L with (VneFN)(oc < oc) and
for this o0 it is u < N{U;neFNi&u_ e ar .

If Ue Sdy then {Unw,w - U} is a partition of w and
thence there is o € {1 such that either uy, S Unw<U or
u, S w-UcV - Uholds. Thus we have proved that Ue®i=
=(V-10) ¢ a@.

Temma. Let p & ot+3 % q 2ec&UpcUq and let the
formula (Vvep)(v & 7+ C) hold. Then there is ue q with
{vepsvnu £ ¥t = fR.

Proof. If (Yueq)({vepsvau £ >33 (3) then a =
={veps(Juea)lvau T9)3 2 3+ and therefore we can
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chooge vep - a. For this v we have (Vueq)(van ) and
this contradicts the assumption (Jq2v since we would have
VR e .

Theorem, If FNCR<SSCN are two cuts such that S is no
sr-class and such that the formula ( Vx € R)(Vf3 € S)(x-B e
€ 8)&(Voc,3 €R)( e 3 c R) holds then there is an w -comp-
lete ultrafilter %! on Sdy with «(®) = R&»(#1) = S.

Proof. Since S is no gr-class, there is a descending
sequence {a;c st edyso that N{o jx € Q3= 5. Let w be
a set such that there is ¢ S with w & 5, let {9, 50¢e 3
be the class of all partitions q of w with q< R and at the
end let Ve = q. - We are going to construct by induction a
descending sequence {u_ ;o € 0L} such that for every o € A
the formula u & s &(ﬂveq“_)(uw‘_lc_v) holds. We put u, = w.
If we shall have such a sequence we shall put ¥ = {Ue Sdy;
(3t ef)(u, cU); and such a class will be an ¢)-complete
ultrafilter according to a previous lemma.

Case 1. Let us suppose that R ={w ; (V3 e S)(x-B e S)f.

(a) Let for o ¢ Q the set u, have been constructed,
we want to construct the set w .. Evidently u < Ugq, and
thus it is sufficient to choose u . 80 that (3 v’sqcﬁ)(‘},a-f‘
=u.n va&(vv'e ‘?nc,)(“}-m-l ?:u,xr\ v’)). In fact, we have tri-
vialiy u .1Su, and moreover, assuming that w o 3 ReS we
get 3.7y, ¢ S (because 7 € R) and hence we would obtain
“--c:\\" ﬂ * ¥ € S which contradicts the induction hypothesis
u_ R 5; therefore we have proved the statement w S s,

(p) Let 0 o € 1 be a limit ordinal and let us as-
Sume ;pat the sequence {“/3 3 Be(ec n L)} satisfying the pro-
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perties in question has been constructed. Since S is no o7 -~
class, there is d ¢ S such that (V3 e (ecnfd))(upy S I&
& d'< d_) and according to the prolongation axiom we are
able to choose u , so that u, = o and u SN{ug; B e
c(tn 1)}, (In detail: cc n {1 is countable and thence the-
re is an increasing sequence {o( ;neFN{ such that U{oc nd
nefi{= U(cnf)l) and we can choose £ with (V ne FN)(f(n)=
= u JE(VR, e dom() (A< B — (2(B) <2(RILL(R) s
% o’).) Moreover, choosing 3 € dom(f) - FN we have £((3) =
SNiuy;yelecn)iue(@) 5 o and therefore there is
a one-one mapping of o° into £((3); the range of such a
mapping can serve as a set we look for).

We have y( Wt ) =S since for every limit ordinal e € {L
we have constructed u,, in such a way that u 2 g & u €
€ W and, on the other hand, the inclusion SC» (#%L) fol-
lows from the fact that (Vo € )(u £ 5). Purther from
the construction we get RS w(71) and the converse inclusi-
on is a consequence of the firat theorem.

In the foilo'ing two cases let ¢ (p,u,{ ,{ ) denote the
formula UpQu&{vep;unv?& €3 ;_:Q . We can suppose that
{x 3(VpB € S)(x-BeS8)} - R+0 and therefore we are able
to fix { in this class. According to (V§ e S)({-§%<R),
we can choose moreover g ¢ S with Q- € <<% and furthermore
using the last property, we can fix pairwise disjoint p such
that Up = w&gq (p,w, §,8 ).

Case 2. We shall assume that R is no ' -class. In this
case there is a descending sequence {e_ ;< c 0% so that R=
=N{e_;xcefd.

Case 3. We shall suppose that R is no & -class.
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These two cases exhaust all possibilities since every
semiget which is simultaneously o and 6 is a set (cf. the
last theorem of § 5 ch. II [(V]), and R cannot be a set sin-
ce it is closed w.r.t. +. We shall treat these two cases si-
multaneously and we are going to construct except a descen-
ding sequence of sets fu, ;o< €13 even two descending se-
quences {§ o ;<€ % and {§ ;X €03 of natural numbers
8o that (Voc € 0 )(@(pyuyes fucrfc ) & § o S&E ¢ R) and if
R is no € -class we shall require moreover that for every
o e f) there is € € Rwith ( - §>( . We put u, = w,

fo=f amd §o=(-

(a) Let for o &€ N the sets uy, £, and $. with the
required properties have been constructed. Let us define

focs1 a0d § 4y in such & way that the formulay .- € . <
€€ <V (S * D& Wr § o1 28 <8 Py + 1)
holds. We have 73, € R and hence according to the imduction
hypothesis £ ¢ S § ¢ Rweget § 1¢S5 &0 . ¢ Rand
moreover if there is & ¢ R such that €. §c>{ then

6-(¥ +1)ecRand 6-(7, +1).0 >6.,>§-

Putting B = fu,n vivepQu nv £ §_ -7 we ob-
tain Fz{uocn vivep&u_nv ® €t from which
£ 8 & %y f. 4 follows. Purthermore according to
q

oC

A YV and to the last lemma there is ue q, 80 that
veD;

, o
vou £ § 1t &8y, and thence defining u .5 = un

.

nu, we get ¢ (Podis1r §ocarr Focpn)e
(b) Let 0+ < €fl be a limit ordinal and let us sup-

pose that we have constructed the sequences {uﬂ; fe(xn
N, {§ a5 fe (xnfl)f and {Qﬂyfse(ocnﬂ.) satisfy-
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ing the conditions in question. If R is no s -class then
we can fix § e ((0{2’,, ifelecnl)ineg, ) ~-R IfLR
is no 6 -class then according to the induction hypothesis
for every 3e (¢ nil) We can choose 63 « R with (,- 6ﬂ'>
>$ . The class o« N {l 1is countable and therefore there
is G e R such that (V3 e (cn)(6, <& ) and hence
(VRe (¢ nf))(Qy- 6 >¢ ). Let us fix {, so that
6 >F2 (8§ - 1):6 , thus even in this case §{  is
no element of R. The definition of £, 1is in both cases the
same as follows. Since {, < { and since o:(’ ¢ S there is
£ ¢ Swith (- §'<d, and thus we can fix £, as an e-
lement of ( N {gﬂ; Re(xnd)t n §”) - S because S is no
sr-class and because o« » Ll is countable.

By the prolongation axiom there is u c N { uz; B e
e€(xnN)} so that ¢ (p,u,g,,c,g“,c) and according to the
definition of ¢ , we are able to choose u <cu in such a
way that the formula ¢ (Pyu ) §cs L I&W,NE L < I &
&ivepsvou ¥ 0% 5§, holds.

The statements » (2f) = S and R c (/1) can be pro-
ved exactly in the same way as in the first case.

The proof of the formula . (7% )c R is different in
the cases we deal with; according to the definition of

() , for every ¢ ¢ R we have to conmstruct a parti-
tion g 3 ¢ with @Ml = 0.

Case 2, 1If we put Py =1ve psu_ v404 then U< VR«
¢ 4l (o« being an element of ) ). Let us suppose that there
are ve p and o € ) sSuch that u_n v is an element of N
then there would he 3 e O with u,< u, N v but according

R~
to the construction we have 2 3 {ue piunug * 0}, which is
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a contradiction. Thus we have proved that for every oc < fL
the classes p,, and %7 are disjoint. Moreover, for every
limit ordinal o¢ we have p, & § <€, and hence ¢ ¢

¢ (1) from which R = e (91) follows.

Case 3. To prove the inclusion w(#Wi)cR let e ¢ R
be given; without loss of generality we can suppose that
2¢ <§ . Let p be the minimal 3 so that B.¢e = § .

At first we shall prove that for every « € () the formula
?m > 7 holds. If it would not be true then there would be
6'e Rwith 6 - _>_6‘.§dz§ . FPurthermore, 26’c R and hen-
ce 26 < € from which § < 6.7y = 2(5’-%“6&, ’%uvould fol-
low, but this contradicts the choice of ) since either 9~
or 3+ 1 is even and both %‘and 21%-1 ere smaller than -
(because 3 = 2).

Since y.€ = S s, there is a partition p of w shich is
coargser than p and such that P & € % ( VueP)({vep;vnu =+
*0} g-g*). To prove e ¢ w (1) it is sufficient to show
that P W = 0, If the inclusion “(3 < u would hold for some
limit B e ) and ueP then 3 < S{s would contradict the
formila {vep;vAu40? % y &4 VEPiu, N vi03 A ?ﬁ and
this finishes the proof.
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