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A SENTENCE THAT IS DIFFICULT TO INTERPRET
Vitézslav SVEJDAR

Abstract: A ZF-sentence ¢ is found such that (ZF + ¢ )
is not imnterpretable in ZF, (GB + @ ) is not interpretable
in GB, but (ZF + ¢ ) is imterpretable in GB.
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Introduction. In 1972 H4jkovd and H4jek constructed

an arithmetical sentence g such that (ZF + ¢ ) is relative-
ly interpretable in ZF but (GB + ¢ ) is not relatively inter-
pretable im GB (L2]). If we denote I,p and IGB the sets of
all sentences ¢ such that (ZF + @ ) is relatively interpret-
able in ZF and (GB + @ ) is relatively interpretable in GB
respectively, the result imn [ 2] shows that I,p - I,p is non-
empty. In 1976 Solovay proved that also IGB = I;p is nonemp-
ty ([4]). The relation between Iyp and Izp is further analy-
sed in [ 1], In the present paper we shall use the methods of
[2] and [4] to obtain the following result.

Theorem. There exists a sentence @ such that

<57¢ I,pVIgy but (ZF + @ ) is relatively imterpretable in GB,
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Preliminaries and Solovg's provability predicates. We
deal with metamathematics formalized within Peano arithmetic.
Formulas and terms are identified with their G8del numbers.
Con(7 ) is the usual consistency statement for a formula < (x),
Intp(z,x) expresses that z is a sentence and x is an interpre-~
tation of (GB + z) in GB, where interpretation includes both
translations of atomic formulas and proofs (in GB) of transla-
ted axioms (of (GB + z)), see [1] and [ 2]. ZFMn is the finite
set of all axioms of ZF which are less than n. In arithmetic,
zf is the natural d efinition of all formal axioms of ZF, in
other words, zf(x) is the natural binumeration of ZF,

For a theory T in a language L let Tc be the conservati-

ve Henkin extension of T formulated in L,. Let A(L) be the
get of all closed instances (in Lc) of logical axioms, of a-
xioms of identity and equality and of Henkin axioms ([3]). A
sentence ¢ of L is provable in T if and only if it is a tau-
tological consequence of A(L)uT (see[3], p. 49). In the
present paper L is the language of ZF while T is ZF or the
predicate calculus for L.
A function s associating O or 1| with every L, -sentence
less than n is a generalized satisfactory seguence on n if
(1) 8 preserves logical connectives
(2) s(g) =1 for every ge A(L).
A function s is a gatisfactory sequence on n if, in addition,
(3) s(g)

1 for every ¢ e ZF,
The notion of satisfactory sequence is immediately formalized
in arithmetic. Now let us define the formalized Solovay’s

provability predicates as follows:
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Prf (¢ ,x)=¢ < x and s(p) = 1 for every generalized
satisfactory sequence 8 on x

Prf(@,x)=¢ < x and s(¢) = 1 for every satisfactory

sequence 8 on x
Pr ()= 3 x Prf (¢ ,x)
Pr(g) = 3 x Pre(g,x).
We read Prf(¢ ,x) as " ¢ is provable on level x". The prova-'
bility predicates have the expected properties:
Lemma. Let ¢ be a sentence in L. Then
(1) Pro(q:) iff @ is provable in the predicate calculus.

(ii) Pr(g¢?} iff ¢ is provable in zf.

Satisfaction relations. In GB + V = L we are able to de-

fine the partial satisfaction relations for formulas in Ib'

The axiom V = L is required for the definition of values of

Henkin constants. For a more detailed treatment of satisfac-~
tion relations see [4] or [ 1],

A class Z is a satisfaction relation on j (in symbols

Tr(Z,j)) if 2 is a function defined on all pairs <{a,u) where

u: @ —> V is an evaluation of variables and a is a term or a
formula in L., a<Jje If a is a term, Z associates with it its
"correct" value under u, if a is a formula, Z associates with
it its truth value O or 1, The inductive (Tarski’s) conditi-

ons determine the values of Z uniquely. A number j is occup-

able (in symbols Ocp(Jj)) if there exists a satisfaction rela-
tion on j. Satisfaction relations have the following proper-

ties:

Lemma (GB + V

L). (i) If Ocp(Jj), then the satisfac-

tion relation on j is unique.
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(i1) {33 0ep(J)y is a cut, i.e. it is closed under <
and +1 but {j; Ocp(j)}} = « is unprovable.

(iii) If ¢ is a sentence of L then

FTZ2,) & F<j>(g= 2Z(F, ) = 1)

(iv) If Tr(Z,j) then Z restricted to pairs {a,u) where

a is a sentence gives a satisfactory sequence on j.

The construction. We are now ready to define our sen-
tence g and prove its properties. ¢ is defined using the
self-reference theorem as follows:

=YX, y(Intp(T ,x) & Prf(&F,y) (& (2f M x) —> T )< y—>
—> Prf (& (zfTx) — =g ,y)).

First, let us prove that (GB + ¢ ) is not interpretable
in GB, Assume the contrary. Then Intp(?,x) has some standard
witness W. Let us denote d = X (2zfM®) —» g . Then
(k) o —>VyPr(F,y)&d<y —>Prf (& (2 ME) — G ,¥y))-

By the essential reflexivity we have
9 — Con(zfMm +&).
That means, by (i) of our first lemms,
(x*) ¢ — I Pr(&@GzfME) —>7g ).
By (%) and (x %) we have
@ —> V¥(@<y—> 1 Pre(g,y)).

But if & is not provable on any level greater than d, it is
not provable at all, Hence by (ii) of the lemma

¢ —> Con(zf +5%)

¢ —>» Con(zf).
Hence ¢ implies Con(zf) which (being equivalent to Con(GB))

is not an element of IGB’ This is a contradiction with
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g < Igpe

For @ ¢ IZF notice that the provability predicates are
primitive recursive and @ € TTl. Since ¢ is unprovable,
(ZF + ¢ ) is not interpretable in ZF.

To_interpret (ZF + ¢ ) in GB it suffices to interpret
(ZF+ @) in (GB + V=L + ¢ ). Let us proceed in the last
theory. We have

Ix,y(Intp( % ,x) &Prf(G,y) & (& (2zf M x) — 76 )<y &
& = Prr (& (2f T x) — Tg,¥)).

As ¢ , by (iii) and (iv) of our second lemma, for every
occupable j there exists a satisfactory sequence s on j such
that 8(@) = 0. Hence
VJ (Oep(j) —> 1 Prf(G,J))

and our y is nonoccupable. Also, since Intp(%, « ) has no stan-
dard witness, x is nonstandard. )

Since - Prf (& (zf M'x) — 75 ,y), by the definition of
Prfo there exists a generalized satisfactory sequence s on J
such that s (& (zfMx) —» 5§ ) = 0. By the Solovay’s const-
ruction (see [4] or [1] for details) we can use s to construct
an interpretation x of the langusge L such that for every sen-
tence ¢ in L

— ¥ =s8(F) = 1.

But by the nonstandardness of x we have s(y) = 1 for every
v € ZF and also s(@) = 1 for our constructed @ . This con-

cludes our proof.
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