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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,4 (1981)

ON THE RELATION OF THREE-VALUED LOGIC TO MODAL LOGIC
Kamila BENDOVA

Abstract: Three-valued logic with the third value
meaning "unknown® is investigated. Each model of this three-
valued logic determines a Kripke model of modal logic = the
set of all two-valued completions. The aim is to characte-
rize such Kripke models by means of modal logic. This is a-
chieved for propositional logic and (on a weak form) for mo-
nadic predicate logic.

Key words: Three-valued logic, modal logic, Kripke
models.

Classification: 03B45, 03B50

The aim of this paper is to clarify the relationship
between Kleene ‘s three-valued logic and modal logic.

Kleene s 3-valued logic was introduced (by S.L. Kleene
in 1952 [1]) as a formalization for incomplete models, i.e.
models where some values of predicates are missing aml has
found applications in mechanized hypothesis formation [2],
[3]. For further investigation of this logic see (4] and [8].

In Part I we discuss the 3-valued propositional calcu-

lus, in Part II the three-valued mohadic predicate calculus.

I - Propositional Calculus
1.1. Kleene’s 3-valued logic uses 3-valued models in

which the third value denoted by crogss " x " in the present
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paper represents an undefined part of a predicate in an in-
complete model. This approach differs from other types of
3-valued logic by the requirement that all formulas valid (or
invalid) in a 3-valued model must be valid (or invalid) in e-
very its two-valued completion, i.e. in each model that re-
sults from the given three-valued model by changing all cros-
ses to zeros end ones in an arbitrary way. From this require-
ment the definitioms of connectives a&lso arise:

The language LP of propositional calculus consists of a
countable (or finite) set P of propositional variables (deno-
ted by p, q, r,...) and the connectives &% ,v , 7 . Formu-
las are defined by induction as usual. The set of all formu-
las is denoted Fla (Lp).

A valuation N of Ip is a mapping from P into {0,1,x3.
The value of a formula ¢ in a valuation N (denoted by Illg l\.)
is defined by induction with the help of truth-value function:

if 0 <« % < 1 is the natural ordering om {0,1,>x3% then

iplly = N(p) for peP
\Iqw&wﬂ, =min @ ly, lyly),
l\q?vtlf“! = max( Ao g, lwily),

Im ol
Implication @ — ¥ can be defined in Kleene s logic as eV

Vy . A formula ¢ is yglid in N (denoted by Ni=¢ ) if
Nolle=1. ¢ is 3-equivalent to ¥ (9 =3¥) 1f for every va-
luation, gy = Nyl -

1.2, Basic definitions and facts

ﬁllg;llywhere 190=1,a1=0, 1x = x.

a) For every formula 9 there 1s a valuation N such that
“Qun = X o
Moreover, there is a valuation N such that for every ¢ ,
e ﬂ’ =% (N(p)l = x for all peP).
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b) A valuation N is a 2-valued valuation if the range
of N is included in 0,13, ¢ is 2-tautology if ¢ is valid
in every 2-valuation, ¢ is 2-equivalent to y (@ =,y)
iff for every 2-valuation N, lgly = ""l"“N- Fact: & is a 2-
tautology iff for every valuation ¥, I Iy £ x.

¢) A 2-valuation N is called a completion of M if for
every peP, if llphy +x then liplly = Iplly. The set of all com-
pletions of M is denoted by 2D (M).

d) For every ¢ and for every N, if lg IIN-'#x then
oIy =llyhy for every M e D(N). Thus, each formula of

Kleene ‘s logic is monotone in the sense of [5]. On the other

hand, there is a formula which is valid in every completion
M of N and nevertheless is not valid in N (e.g. pv - p for

plly = ).

1.3. Let P be a set of propositional variables, Ly the
language of propositional calculus enriched by a modality [ .
The formulas of Ig are called modal formulas (denoted by & ,
¥,...). The set of all such formulas is denoted Fla(Ig). The
modality [0 is read "necessarily", a unary modality ¢{ ,
defined by () = 701 is read "possibly". Kripke model (L6])
of modal system S5 of the language Ig is a system X = <@WLR>
where 7227 is a non-empty set of 2-valuations of L, and R is
a relation of equivalence on %t .

The value of a formula in X is defined inductively as
follows: first a value of § is defined in any M e % w.r.t.
X :
if peP then lip "dC,ll = Ilpllu;
it & = &) &Q, then Ndly = minC1dlyyr Vol ),

S/
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similarly for v, -1 ;

it $ = 0O, then I® Iy y = min Q bl“:ﬂ:,u;

Ne & NRME.
¢ is valid in M wer.t. X if 0 i = 1.
JC.M
& is valid in X if ® is valid in every M € %L ., In par-
ticular, if R contains only one equivalence class (then the
corresponding S5 model is denoted by #Z ) & is valid in X
iff 0P is valid in some (and thus in every) model M & 9.
® is S5-equivalent to ¥ if for each M and ¥
ﬂéllx’uz "Y"'Jc,ll'

We say that a formula § is boxed if each occurence of a pro-

positional variable is in the scope of a modality. For furt-

her information on modal logic see e.g. 171,

l.4. Observe that for each 3-valued valuation N, the
system D(N) is a particular Kripke S5 model. Our question
is to describe those Kripke models that are obtained as D (N)
for some N, Clearly, we have to specify means of such descrip-
tion. Let us search for a description using the language of
the modal logic. But by this language we cannct distinguish
two modal models which satisfy the same boxed formulas. Such
models will be called equivalent. Thus we shall give the ne-
cessary and sufficient conditiom for a Kripke S5 model to be
equivalent to < (N) for some N.

1.5. Definition. A literal is a propositional variable
or its negation. A conjunction of pairwise distinct literals
is called a fundamental conjunction (FC); FC in which every
propositional variable occurs no more than once is called e-

lementary conjunction (EC).
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1.6. Lemma. Each formula of Lp is 3-equivalent to some
disjunctiorn of fundamental conjunctions.

Proof., Easy to show.

1.7. lemma. Let 9 ,vy € Fla(ly), let W1 be an S5 model.
a) If ¢ implies ¥ in the classical propositional calculus
and M =Q¢ then also @ = ¢y . In particular, if
M = O @ for at least one i = 1,...n then
m = 0’;&:’4 P; -
b) If =,y then W = Q¢ iff Wl =0y .

1.8, Definition. Let 7t , 771” be two S5 models. We say
that they are equivalent (notation 7 = #L” ) if for amy
® e Fla(I%),
W= D iff W=D .

1.9. Lemma. Every formula $ ¢ Fla(l%) is S5-equivalent
to a disjunctionm of conjunctions of basic modal formulas, i.e,
for every e F’la(L?,),

=55 % D M9
where llije{'ﬂ,—\O ,0f and %€ Fla(lp). In particular, for
every boxed formula & ,
®=s5 4 A Mi3Piy
where M, ; € {0,7149¢ ana Pi;€ Fla(L,).

Proof. By the induction using well-known equivalences of
the propositional calculus and the following evident S5-equi-
valences:

Yovr= O v Oy

6(9&014:)55509) & Oy
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Qérysssog?
VR Oga ESS—'oq’

1.10, Claim.

@i= W' iff for every pe Fla(ly),
WMedp iff W= Q0.
Proof. From the preceding lemma.

1.11. Proposi tion. Let N be a 3-valuation. Then D(N)
with the trivial equivalence containing only one equivalence
class ( D(N) < D(N)) is anS5-model. We call all such models

T-models.

1.12. Theorem. An S5-model 721 is equivalent to any T-
model iff %1 satisfies the following condition

(+) for every EC @ & ¥
if Mi=0g and W= 0y then WL =0 (o &y )e

Proof. 1) Let 7 be equivalent to a T-model (= £ (N)
for 3-valuation N). If % = ¢¢ and % = ¢y then also
SN i=0g and S(N) &= ¢y . Now, if @ & ¥ is an ele-
mentary conjunctiom then no propositional variable occuring
in @ occurs in % and vice versa. Thus if there is a comple-
tiom N, of N such that e “‘1 =1 and a completion N, of N
sach that (R’ K, = 1 then take a completion M of N coincid-
ing with "1 on variables occuring in ¢ and with N, on other
variables; clearly, g & y Iy =1. Thus I(M = (P & y )
and also M = § (@ & y ).

2) Suppose that 771 is an S5-model satisfying (+). Let

us define a 3-valuation N as follows:
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Iplyg =1 ir W = Op;
iply =0 if W =O-p;
Uply = > otherwise, i.e. if = O P and W = 4 4 p,

We shall show that @i = D (N). Clearly @S I (N) hence by
the preceding Claim it suffices to show for every @ s
€Fla(ly), if D(F) = 0¢ then also @ = ¢ 9 .
Suppose that B (N) = 0@ , i.e. that there exists Me Q (N)
such that M = @ . By the Lemma 1.6, ¢ =3, K, where K,
are FC for i = 1,...n. It M 0-1-_\?,, K; then there exists j<=
such that lurxj. Clearly ‘j is EC and nvaN;x. Hence if KJ =
'k;:\d £,Py then llg,pligZx for every k = 1,...n and thus by
the definition of N, %t = ¢ &,p . Since Kj is EC we obtain,
repeatedly using the property (+) that

= 0554 €xPyr
ice. M= OKJ. By lemma 1.7 also 7 = 0@ .

Q.e.d.

Thus we have answered our questiom. In a slight reformu-~
lation, our answer may be formulated as follows:

An SS5-model 771 is equivalent to (not S5-distinguishable
from) the T-model (a set of all completions of a 3-valuatiom)
iff ¥t has the following property: whenever 7! = ¢ ¢ and
M = 0y where  and y have no propositional variables
in common then 7= 0 (@ & ¥ ).

1.13, Corollary. a) Suppose that for a given N,
card({p; fiply = x}) = n. Then card(I(N)) = 2" and there is
no modal model equivalent to D (N) and different from I (N),

b) Suppose now that card({p; Aply =x{) = & .
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Then

1) there exists a countable modal model equivalent to
& (N); #,

2) there exist 22 modal models equivalent to < (N).

II. Monadic predicate calculus. Our aim is to investi-

gate modal models which are sets of completions of a 3-valued
model, called T-models. In the propositional calculus we have
seen that by the modal language T-models are not distinguish-
able from those satisfying the property (+) of Theorem 1l.12,
thus we can only describe the set of models equivalent to T=-
models.

Next we want to study this problem in monadic predicate
calculus. Thus we try to find those axioms which describe the
set of models equivalent to T-models in some sense. But we suc-
ceed only partially: we can describe the set of modal models
which are undistinguishable from T-models using formulas g
where @ 1is without modalities. But we believe that our method
of proof can be useful for a complete solution in the case of

monadic logic; see Remark 2.13.

2.1. The language of a monadic predicate calculus L@ con=-
sists of variables (x,y,z,...), & finite set of predicates F=
=4iPy,Pp,... Pp%, connectives & ,v, 7 and quantifiers V ,3.
Formulas, free and bound variables, closed and open formulas
are defined by induction as usual. The set of all formulas is
denoted Fla(Lgp). A 3-valued model M = {M, Pyress P> consists
of a non-empty set M (called the domain of i ) and of a col-

lection of mappings P,,... P_ such that ,:M—> {0,1,x% .
1 n i e
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The valuation of formulas is defined by inductiom: let ¢,
e Fla(Lg,), let e be a mapping of variables to M;

i) if @ = P;(x) (atomic formula) then the value of ¢ im.A
for e is [IP;(x)lell, = P;(e(x));

i1) (e & y )lell, =mim(lglell, , llylell, ), simi-
larly for v, 7 . N
iii) (Yxg)lell, =min{loledl, ; e;(y) = e(y) for
each y distinct from x§;

(I xe)lelly, = Il (7 (Vx)@}ell,
We say that a formula ¢ is yalid in a model A ( A = ¢ )

if
ll(Vxl..xk)cp (xl,..xk)“‘u = 1 where FV(g) =-fx1,..xk} .
Particularly, a closed formula ¢ is valid in M if |l g ly=
= 1.
Formulas ¢ and y are 3-equivalent (@ =,y) if for
every M and every evaluation e,

ll@[e]llM ="1,r[e]ll_‘t.

2.2, For the 3-valued predicate calculus there hold
the corresponding definitions and facts as for propositio-
nal calculus, especially

a) M ={M, (Pl,... J’n) is a 2-model if P, :M —>
—>40,1f. @ is a 2-tautology if ¢ is valid in every 2-mo-
dels. @ is a 2-tautology iff for every M ,e, g [ eJl, Zx.

b) A 2-model M = <M, Py,... %) is a completion of
X=cn, o5, 25 e

1) N=M, n =m;

11) for every i£m and every aeM,

12 P} (a) + x then P} = ) (a).

The set of all completions of N is denoted by D (X).
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c) For every ¢, o, N if Me T (N) and
lg Lelll 4+ x then lglelly =lglelll,, . Tus each for-
‘mula of Kleene’ s monadic predicate calculus is monotone.

2.3. Let L?, be the monadic predicate language with n
predicate symbols and the modality [J . Formulas of L?, are
called modal formulas (denoted by & ,Y¥,...), the modalityD]
is read "necessarily", the modality ¢ = 7" 0  is read
*possibly™. A Kripke’ modal S5-model is a system ¥ = <%, R>
where 71 is a non-empty set of 2-valued models of Ly on the
same domain and R is an equivalence relation on 791 . The
valuation of formulae im X is defined as follows:
first we define the value of § in any M e 27 for an evalua-
tion & w.r.t. ¥ :

1) 1£ @ = Py(x) then 1§ Lelly (o= GH (e(x));

1) 2P =2,&9, (§,v d,10,,Vxd,, 3x,) then
the truth value of & is determined from the values of bl
(and 92 resp.) as usual;

iii) ird = 0 ¢, then NCellly s = min {1l Ql[e]!,;x;

Ne M % MRNT.We write (X, M)=d Le]l instead of
MQ[OJI\‘,JC = 1.

2.4. Conventions and definitions. In the sequel, we res-
trict ourselves to modal models with the equivalence relation
having only one equivalence class, i.e. models of the form
X = <L, M =< @L>. Such a model is denoted simply by 9t .
Thus from now on, a modal model is simply a non-empty set of
2-valued models with the same domain. Observe that the truth
value of a formula 097 in a model #¢ does not depend on
the choice of a particular A & @, thus we write % = ¢ ¢ Le]
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instead of (W1, A )= ¢ @ [ o). Similarly for each formula

® in which each atomic formula occurs in the scope of a
modality ( O or ¢ ). Call such formulas boxed. A boxed for-
mula § ie valid im @t 3if L vw= & [ e] for each e.

2.5. Definitiom. Two modal models 7% , 2l with the sa-
me domain are weakly equivalent if for each formula ¢ with-
out modalities and each e we have

M= Qplelift A = ¢ ¢ Lel.

2,6, Definition. let M be a 3-valued model. The T-model
associated with M is D (M) - the set of all completions of
M . (Clearly, & (M) is a modal model.)

2.7. Remark. We may now make prezise our aim: to charac-

terise modal models weakly equivalent to T-models.

2.8, Definition. Let @ (x) be an open formula with one
free variable. @ is said to be a fundamental disjunctiom (FD)
if ¢ is a disjunction containing only atomic formulas or
their negations. Similarly, we define FC, CFD, DFC (fundamen-
tal conjunction, conjunction of fundamental disjunctioms etc.).

@ 1is an elementary disjunctiom if ¢ is FD and contains e-
very atomic formula at most once.

2.9, Definitiom. A canonical sentence is a formula of
the form (V x) ¢ (x) where ¢ is a FD.

2,10. Theorem., Every formula is 3-equivalent to a Boo-
lean combination of canonical sentences and open formulas
(Boolean combination means by the help of connectives & ,v,
<1). Particularly, every closed formula is 3-equivalent to a

Boolean combination of canonical sentences.
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Proof. Similarly as in the 2-valued case. (See e¢.g.
[31.) L
Corgllary. Every formula is 3-equivalent to a disjuno' '
tion of conjunctioms of canonical semtences, their nogatiolﬁ;
atomic formulas and their negatioms (&isjumetive normal form).

2.11. Definitiom. Let M be a 3-model. We extend the

language I, by constants {a;acMi and interpret each g by a.
I..* means the extended language. A closed quantifier free for-
mula in L¥ is called an instance. Bvery instance is a Beele-
an combination of atomic formulas of the formP(a).

An elementary conjunctiom is a conjunction @ of distinmct
atomic instances in which each atom occurs at most once, i.e.
there is no atomic instance occuring in ¢ both in positive

and in negated form.

2,12. Theorem. A modal model @7 is weakly equivalent te
& T-model iff 9t satisfies the following two conditioms:
(1) for each instance ¢ & y which is EC,

it M =909 and @ = ¢y then also Wk O(@p&y);
(2) for any open L ~formulas ¥, @y,.+ @, with one free. va-
riable and for each seguence a;,... & of elements of w,

if e (VX 0(g(x) &4\ @5(a;)) then

B 0 (V) (@ (x) &, gitay)).

Proof. 1. Let 7L be weakly equivalent to & (H ) for
a 3-model M with the domain M. We will show that 9! satis~
fies both conditions.
(1) Let the instance @ % 3 be an EC, let % = ¢ and
MEdy. Then also D(M) = ¢p and S () =0¥ ; L.,
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there exist ¥y, X, e $(M) such that N o and .)/'2l-‘}"°
Define a completion X in the following way: for each atom
P;(a) occuring im ¢ (positively or negatively), define
— K.
Y (a) = ®; L(a);
similarly, if P;(a) occurs in v , put
= N
)l () = %a).
(Recall that @ % ¢ 1is an EC!) The rest is completed arbi-:
trary. Clearly, ¥ e D(M) and ¥ = @ &y , thus D (M)E
=49(® % y ) and also from the assumption, W= ¢ (P & ¥y ).
(2) Let @ = (Vx)¢(ap(x) & £ ¢;(a3)). % and & (M)
have the same domain, thus we have (from the assumption)

M=V (P(x) & 2\ ¢ (ay)).
Put @(x) & A\, ¢;(a;) = G (x). For every ac M, 17 (a)f, z =

and there exists N %z $(M) such that /%= G [al. We will

construct the completion X by putting
— KMy
{P‘”(a) = ¢ “(a) for ac M,

Clearly, ¥ e D (M). We claim that N =(Vx)F (x):
XN &= @3la;] because Jf.ik—- qi[,ei] and the validity of an
instance ¢;(a;) depends on:g.r on valuations of P, (a;) (k£n)
which are the same as in N ', Similarly, for ac M, ¥ k= @ [al.
Thus ¥ =(V x) @ (x). By the same reasons, J k= ; /\, ¢;(a;)
thus & k= (Vx)% (x) from which it follows that

D M) e ¢ (Vx)F(x)
and thus also 2t l= ¢ (Vx)(@ (x) AT FLCTRRR

II. On the other hand, let 2! with the domain M be a
modal model satisfying the conditions (1) and (2). Define a
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3-model M with the domain M: for acM, i4n,
=11 meorw,
{Pi‘v’(-) =0 if W= O Py(a),
5’;_“(.) = %X  otherwise.

We claim that 77 is weakly equivalent to & (4 ). Clear-
ly, #tc D(M). We are going to prove that for each closed
IX ~formula ¢ , if J(M) = ¢ @ then also W = dg -

1) PFirst let us prove this for ¢ being an instance.
The proof is the same as in the propositional calculus (The-
orem 1.12) because {J'i"“(a); i4n&ach} is a valuation for
a language L, , vhere P= {P{(a); 16n&acki.

2) Now let @ be closed formula of a language LY , let
9 (M) ¢g9 . By Corollary of Theorem 2,10,

@ E3£\£/‘Ki where
G
Ky =,/ (V3 @uyx) & K (30) Fyp(x) & X Fiplay)e
From the monotonicity of formulas it follows that

ey = x and that there exists i<k such that KK, Zx.
Por this i there exists A'e (M) for which N Ky, i.e.

m I
N /g (V) @) 8Ny (32) Ty () &g /0 4 Fclay)-
Put Vi(!) 35/‘\3 qij(‘). mwl’, J/h (V!) Yi(x)- From the
validity of the second part of the conjunction it follows that
there exist elements &),.. @&, €M such that

Jf\-h}.\wq -?‘n(.k)
so that we have
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Since Ne¢ D(M), we have also
DM = (y;(a) &b& F 5y (a)) for every ac M.
¥j(a) &k/S; P ;x(8y) is an instance, thus by the preceding
part of the proof also for every ac M,
@ = ¢ (yy(a) &k/s\q, Fipm)).
M is the domain of @ , thus
M= (Vx) 6 (yy(x) &k/é\% Fixle)).
By the property (2),
W= QY x)(yy(x) &&/é_\% Tixlay)),
i.e. there exists N e W{ such that
N = (¥ x)(yy(x) &%@%_S;ik(gk))'
N is a 2-model, thus
Ne (V30 (g 00 &g (330 Gy (x) & /N Fyplay)),
i.e. N = Ky; thus Ne= 4 Ky, which means
M =3%q .
This completes the proof.
Q.e.d.
2.13. Remark. We say that %7, 71 are strongly equiva-

lent (notation: 2T = 21 ) if for each boxed $ and each va-

luation e,

W= [e] iff )= § [el.

The two conditions of the Theorem 2.12 are necessary for strong
equivalence of a model to a T-model because models which are
strongly equivalent are weakly equivalent. The open problem

is to characterize models strongly equivalent to T-models. We

know that the property
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(+) if 2= (Vx)0(g(x,y) g‘;/g\m,?i(li)) then
W= O (Yx)N@(x,y) &, F4i(ay))

where every occurence of y in @ is in the scope of a box is
necessary for equivalence but we do not know if it is suffi-

cient.

2.14. Remark. For non-monadic logic presented wethod eof

proof fails, Let
@ (x,y) = (x+y & (R(x,y) & P(y))v (7 R(y,x)& Q(y)))
and M=<{a,b}; P, ‘“, RM> be a 3-model of the type
{1,1,2), such that 0*(b) =1, ®H(a) =1, AM(ba) =x ,
other values are zero, = is a 2-valued identity.
Then

DM)=(Vx)0(Iy) plx,y)
but

D (M) O (VX)) plx,y).
We do not see how to describe modal models equivalent to T-mo~
dels using the modal language without the possibility of ex-
change of ¢ and V.
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